基于非對稱金屬包覆介質波導的納米光刻理論研究
本文選題:非對稱金屬包覆介質波導 + 表面等離子體。 參考:《蘭州理工大學》2017年碩士論文
【摘要】:本文基于非對稱金屬包覆介質波導,使用棱鏡激發(fā)該結構中的導模,刻寫一維亞波長光柵和二維多層亞波長光子結構。通過分析導模的色散曲線和導模干涉光場分布圖,研究一維亞波長光柵和二維多層亞波長光子結構的周期與相關參數的關系。該制備方法成本低廉,操作簡單,產出高,為這兩種微納結構的廣泛利用提供了重要的理論參考,并且為以后在實驗中刻寫制備多層亞波長光子結構提供了一種可能的方法。具體研究內容如下:(1)用325nm波長的激光激發(fā)由Al膜,光刻膠,和空氣組成的非對稱金屬包覆介質波導結構中的零階導模,來刻寫不同周期,不同深寬比的亞波長光柵。通過零階導模色散曲線理論分析和有限元方法數值模擬,發(fā)現改變光刻膠的厚度和折射率,導模的偏振可以刻寫不同周期和不同深寬比的亞波長光柵,并且刻寫的亞波長光柵最小周期能夠達90nm。(2)基于非對稱金屬包覆介質波導,利用棱鏡耦合方式激發(fā)該結構中的TE0導模,通過兩束TE0導模干涉,從而在理論上實現刻寫周期可調的亞波長光柵。在研究中,我們用TE0導模的色散曲線,研究了TE0導模刻寫的亞波長光柵周期與激發(fā)光波長、光刻膠厚度和折射率、棱鏡之間的關系。再用有限元方法模擬的非對稱金屬包覆介質波導中TE0導波模式的干涉電場分布進行驗證。最后,將TE0導模干涉光刻與表面等離子體干涉光刻進行比較,發(fā)現由于TE0導模穿透深度相較于SPP更大,故而可實現在厚光刻膠條件下,改變激發(fā)光波長、棱鏡折射率、光刻膠折射率、尤其是光刻膠厚度等方法有效調控亞波長光柵的周期。(3)理論研究高階導模干涉刻寫不同周期和層數的多層亞波長光子結構。442nm波長的激光作為激發(fā)光源激發(fā)非對稱金屬介質波導中的高階導模。理論分析導模的色散曲線和數值模擬的導模干涉場分布,詳細研究多層亞波長光子結構的周期與光刻膠的厚度和折射率,高階導模的模序數和偏振的關系。這種制備方法不僅可以制備不同周期和層數的多層亞波長光子結構,而且它的過程簡單,成本低廉。
[Abstract]:Based on the asymmetric metal-coated dielectric waveguide, the guided mode of the structure is excited by prism, and the 2-D multilayer subwavelength photonic structure is described. By analyzing the dispersion curve of the guided mode and the light field distribution of the guided mode interference, the relationship between the periodicity and the related parameters of the 1-B wavelength grating and the two-dimensional multilayer sub-wavelength photonic structure is studied. This method has the advantages of low cost, simple operation and high output, which provides an important theoretical reference for the wide use of these two microstructures, and provides a possible method for the fabrication of multilayer sub-wavelength photonic structures in the future. The specific research contents are as follows: (1) the zero-order guided mode in the asymmetric metal-coated dielectric waveguide structure composed of Al film, photoresist and air is excited by 325nm wavelength laser to write subwavelength gratings with different periods and different aspect ratios. By theoretical analysis of zero-order guided mode dispersion curve and numerical simulation by finite element method, it is found that by changing the thickness and refractive index of photoresist, the polarization of guided mode can be characterized by subwavelength grating with different periods and ratio of depth to width. And the minimum period of the subwavelength grating can be up to 90nm.m-2) based on the asymmetric metal-coated dielectric waveguide, the TE0 guided mode in the structure is excited by prism coupling mode, and the interference is achieved by two TE0 guided mode interference. Thus the subwavelength grating with adjustable writing period can be realized theoretically. In the study, we use the dispersion curve of TE0 guided mode to study the relationship between the period of subwavelength grating and the wavelength of excited light, thickness of photoresist and refractive index, prism. The interference electric field distribution of TE0 guided wave mode in asymmetric metal-clad dielectric waveguide was simulated by finite element method. Finally, by comparing the TE0 guided mode interference lithography with the surface plasma interference lithography, it is found that because the penetration depth of the TE0 guide mode is larger than that of the SPP, it can be realized under the condition of thick photoresist to change the excited light wavelength and the refractive index of the prism. Refractive index of photoresist, Theoretical study on the effective Control of the period of Subwavelength grating by photoresist thickness) theoretical study of higher-order guided mode interferometry with different periods and layers of multi-layer sub-wavelength photonic structure. 442 nm wavelength as excitation source to excite asymmetric light High order guided modes in metallic dielectric waveguides. The dispersion curve of guided mode and the distribution of guided mode interference field in numerical simulation are analyzed theoretically. The relationship between the period of multilayer sub-wavelength photonic structure and the thickness and refractive index of photoresist, the mode number and polarization of high-order guided mode is studied in detail. This method can not only fabricate multilayer sub-wavelength photons with different periods and layers, but also have simple process and low cost.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN25
【參考文獻】
相關期刊論文 前9條
1 陳宜臻;王向賢;王茹;楊華;祁云平;;Theoretical study of micro-optical structure fabrication based on sample rotation and two-laser-beam interference[J];Chinese Physics B;2017年05期
2 王茹;王向賢;楊華;祁云平;;Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph[J];Chinese Physics B;2017年02期
3 王茹;王向賢;楊華;葉松;;TE_0導模干涉刻寫周期可調亞波長光柵理論研究[J];物理學報;2016年09期
4 梁慧敏;王景全;王學;王桂梅;;Surface Plasmon Interference Lithography Assisted by a Fabry-Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J];Chinese Physics Letters;2015年10期
5 郭凱;劉建龍;周可雅;劉樹田;;Enhanced surface plasmon interference lithography from cavity resonance in the grating slits[J];Chinese Physics B;2015年04期
6 田曼曼;米佳佳;石建平;魏楠楠;詹伶俐;黃萬霞;左則文;王長濤;羅先剛;;248 nm imaging photolithography assisted by surface plasmon polariton interference[J];Optoelectronics Letters;2014年01期
7 徐向東;劉穎;邱克強;劉正坤;洪義麟;付紹軍;;HfO_2頂層多層介質膜脈寬壓縮光柵的離子束刻蝕[J];物理學報;2013年23期
8 李志遠;李家方;;金屬納米結構表面等離子體共振的調控和利用[J];科學通報;2011年32期
9 孫霞;尤四方;肖沛;丁澤軍;;電子束光刻的鄰近效應及其模擬[J];物理學報;2006年01期
相關博士學位論文 前1條
1 王向賢;亞波長分辨光刻介質特性與光刻方法研究[D];中國科學技術大學;2013年
,本文編號:1916754
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1916754.html