天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電子信息論文 >

基于邊緣粒子濾波的高速列車走行部關鍵參數(shù)估計

發(fā)布時間:2018-04-27 10:44

  本文選題:故障診斷 + 參數(shù)估計 ; 參考:《西南交通大學》2015年碩士論文


【摘要】:本文為實現(xiàn)高速列車運行時轉向架關鍵部位的參數(shù)辨識和故障診斷,對高速列車動力學模型關鍵參數(shù)估計方法進行研究,將基于非線性濾波器的狀態(tài)估計方法應用于高速列車關鍵參數(shù)估計中,主要包括以下幾個方面的研究內容:首先回顧了在狀態(tài)參數(shù)聯(lián)合估計領域以及高速列車關鍵參數(shù)估計領域中前人所做的有意義的工作,并討論了運用卡爾曼濾波器、擴展卡爾曼濾波器以及粒子濾波器來解決相應參數(shù)檢測問題的可能性。接下來,針對列車動力學模型,參考實際參數(shù),建立了CRH380A列車橫向動力學模型,將白噪聲激擾作為模型輸入,相應傳感器觀測結果作為模型輸出。為了驗證模型的有效性,將實際列車振動平臺數(shù)據(jù)與高速列車模型數(shù)據(jù)進行分析與對比。在確認模型準確可靠的基礎上,設定系統(tǒng)相應的統(tǒng)計學數(shù)值,采集模型輸出,使用擴展卡爾曼濾波器(EKF)以及邊緣粒子濾波器(Rao-Blackwellised粒子濾波器,RBPF)進行參數(shù)估計,觀測并比較了兩種濾波器的參數(shù)估計結果,分析了各自的性能優(yōu)劣勢。最后,由于參數(shù)估計體系采用線性列車模型并運用高斯白噪聲模擬列車噪聲輸入,在實際檢測中不具備良好的適應性,在Rao-Blackwellised粒子濾波器的基礎上,根據(jù)狀態(tài)擴展理論對Rao-Blackwellised算法進行改進,以解決原先算法中對于非線性非高斯信號適應性差的問題。運用了狀態(tài)擴展理論對列車實際運行中軌道不平順的影響進行了定量分析,并將其納入算法中進行迭代。運用該改進算法,較好地估計出了列車在實際運行中轉向架二系橫向阻尼系數(shù)、抗蛇行阻尼系數(shù)和輪對踏面錐度等幾個參數(shù)。估計結果較原始的Rao-Blackwellised濾波器在參數(shù)估計精度上有一定提升。接著模擬了多種可能發(fā)生的列車運行故障,使用改進后的方法估計目標參數(shù),結果表明改進的參數(shù)估計方法對實際噪聲具有良好的適應性。
[Abstract]:In order to realize the parameter identification and fault diagnosis of the key parts of the bogie when the high-speed train is running, the method of estimating the key parameters of the dynamic model of the high-speed train is studied in this paper. The state estimation method based on nonlinear filter is applied to estimate the key parameters of high-speed train. The main contents are as follows: firstly, the important work done in the field of joint estimation of state parameters and the estimation of key parameters of high-speed trains is reviewed, and the application of Kalman filter is discussed. Extend Kalman filter and particle filter to solve the problem of parameter detection. Then, according to the train dynamics model and referring to the actual parameters, the CRH380A train lateral dynamics model is established. The white noise excitation is taken as the input of the model, and the corresponding sensor observation results are taken as the model output. In order to verify the validity of the model, the actual train vibration platform data and the high-speed train model data are analyzed and compared. On the basis of confirming the accuracy and reliability of the model, the corresponding statistical values of the system are set, the output of the model is collected, and the parameters are estimated by using the extended Kalman filter (EKF) and the edge particle filter (Rao-Blackwellised particle filter (RBPF). The parameter estimation results of the two filters are observed and compared, and their performance is analyzed. Finally, because the parameter estimation system adopts the linear train model and uses Gao Si white noise to simulate the train noise input, it has no good adaptability in the actual detection. Based on the Rao-Blackwellised particle filter, According to the state expansion theory, the Rao-Blackwellised algorithm is improved to solve the problem of poor adaptability to nonlinear non- signals in the original algorithm. The influence of track irregularity in actual train operation is analyzed quantitatively by using the state expansion theory, and it is incorporated into the algorithm to iterate. By using the improved algorithm, several parameters, such as the transverse damping coefficient of the second system of the bogie, the anti-snake damping coefficient and the taper of the wheelset tread, are well estimated in the actual operation of the bogie. The estimation result is better than the original Rao-Blackwellised filter in parameter estimation accuracy. Then several possible train faults are simulated and the target parameters are estimated by using the improved method. The results show that the improved method has a good adaptability to actual noise.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U270.33;TN713

【參考文獻】

相關期刊論文 前1條

1 楊成祥;馮夏庭;陳炳瑞;;基于擴展卡爾曼濾波的巖石流變模型參數(shù)識別[J];巖石力學與工程學報;2007年04期

,

本文編號:1810412

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1810412.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶ebef2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com