機(jī)載雷達(dá)降維空時(shí)自適應(yīng)處理方法及雜波預(yù)濾波技術(shù)研究
本文選題:空時(shí)自適應(yīng)處理 + 降維。 參考:《西安電子科技大學(xué)》2015年博士論文
【摘要】:具有靈活機(jī)動(dòng)、覆蓋范圍大等優(yōu)點(diǎn)的機(jī)載預(yù)警雷達(dá)在現(xiàn)代化的戰(zhàn)爭(zhēng)中發(fā)揮著重要作用。但是,由于載機(jī)快速移動(dòng),機(jī)載雷達(dá)面臨著比地基雷達(dá)更加復(fù)雜的雜波環(huán)境。在空域和時(shí)域聯(lián)合抑制雜波的空時(shí)自適應(yīng)處理方法(Space-time adaptive processing,STAP)能有效抑制機(jī)載雷達(dá)雜波并檢測(cè)到目標(biāo)。但是,在實(shí)際應(yīng)用中,全維STAP方法會(huì)產(chǎn)生計(jì)算量大和訓(xùn)練樣本需求量高的問(wèn)題。而這些問(wèn)題進(jìn)一步促進(jìn)了一些次優(yōu)的降維或者降秩STAP方法的發(fā)展。由于實(shí)際環(huán)境中缺少獨(dú)立同分布的訓(xùn)練樣本,因此到目前為止,還沒(méi)有哪一種降維或者降秩STAP方法能夠有效的應(yīng)用到實(shí)際的機(jī)載雷達(dá)中。因此,考慮到實(shí)際環(huán)境中有限的訓(xùn)練樣本數(shù)量以及雷達(dá)系統(tǒng)實(shí)時(shí)處理的需求,本文研究了具有計(jì)算量小、訓(xùn)練樣本數(shù)需求量少等優(yōu)點(diǎn)的降維STAP方法。在空時(shí)自適應(yīng)處理之前對(duì)雜波進(jìn)行預(yù)濾波處理可以有效的減少雜波自由度(Degrees of freedom,Do Fs),這樣的預(yù)處理能提高后續(xù)STAP方法的性能,因?yàn)樽赃m應(yīng)處理器有了更多的自由度來(lái)檢測(cè)目標(biāo)。因此,我們根據(jù)雜波模型,研究了計(jì)算復(fù)雜度低、不受訓(xùn)練樣本影響的機(jī)載雷達(dá)非自適應(yīng)雜波預(yù)濾波方法。我們的工作主要包括以下幾個(gè)方面:1.為了提高后多普勒自適應(yīng)處理方法在大陣列條件下的雜波抑制和動(dòng)目標(biāo)檢測(cè)能力,我們提出了一種基于空域分解的后多普勒自適應(yīng)處理方法。首先將接收到的雜波和目標(biāo)數(shù)據(jù)經(jīng)過(guò)多普勒濾波,將濾波后的空域數(shù)據(jù)分解,然后將FA或者EFA的權(quán)系數(shù)表示成分離的形式,從而得到一雙二次代價(jià)函數(shù),然后利用循環(huán)迭代的思想求解權(quán)系數(shù)。實(shí)驗(yàn)表明該方法具有快速收斂性,在小樣本、大陣列條件下該方法明顯優(yōu)于因子法和擴(kuò)展因子法。2.由于機(jī)載MIMO雷達(dá)采用較小的天線規(guī)模即可形成很大的虛擬陣列孔徑,并且具有高角度分辨率和強(qiáng)雜波抑制能力,近些年來(lái)受到了廣大研究者和工程人員的極大關(guān)注。但是由于機(jī)載MIMO雷達(dá)系統(tǒng)自由度過(guò)高,相對(duì)于傳統(tǒng)機(jī)載相控陣?yán)走_(dá)STAP方法,MIMO-STAP將會(huì)需要更多的訓(xùn)練樣本數(shù)和計(jì)算量。因此,我們研究了一種能大幅降低MIMO-STAP所需訓(xùn)練樣本數(shù)和計(jì)算量的兩級(jí)空域分解方法。該方法首先將接收到的雜波和目標(biāo)數(shù)據(jù)經(jīng)過(guò)多普勒濾波,將自適應(yīng)權(quán)系數(shù)進(jìn)行分解,使其變?yōu)閹讉(gè)向量的Kronecker乘積,然后利用循環(huán)迭代的思想求解自適應(yīng)權(quán)。實(shí)驗(yàn)表明該方法具有快速收斂性,在小樣本大陣列條件下該方法明顯優(yōu)于傳統(tǒng)的后多普勒處理方法。3.機(jī)載雷達(dá)兩維兩脈沖對(duì)消器(Two-dimension pulse-to-pulse canceller,TDPC)能有效的沿著雜波跡抑制雜波而對(duì)目標(biāo)信號(hào)沒(méi)有影響,并且后續(xù)級(jí)聯(lián)STAP方法,能有效提高STAP方法的動(dòng)目標(biāo)檢測(cè)性能,不僅適用于正側(cè)視機(jī)載雷達(dá),也適用于非正側(cè)視機(jī)載雷達(dá)。而且該方法僅僅利用雷達(dá)工作參數(shù)和載機(jī)速度等先驗(yàn)知識(shí),濾波器系數(shù)可以提前計(jì)算好,具有計(jì)算量小不受訓(xùn)練樣本影響的優(yōu)點(diǎn)。但是實(shí)際中,受到各種因素的影響,估計(jì)的雷達(dá)參數(shù)有可能會(huì)和實(shí)際存在較大的誤差。因此,考慮到參數(shù)誤差的影響,我們研究了一種穩(wěn)健的TDPC(Robust TDPC,RTDPC)方法。該方法考慮了實(shí)際中參數(shù)估計(jì)的誤差,利用雷達(dá)參數(shù)、載機(jī)平臺(tái)速度等信息設(shè)計(jì)雜波預(yù)濾波器以抑制大部分雜波,剩余的少量雜波可由發(fā)展成熟的降維空時(shí)自適應(yīng)處理方法進(jìn)行抑制。該方法增強(qiáng)了原TDPC方法在參數(shù)存在誤差情況下的穩(wěn)健性,進(jìn)一步提高了TDPC方法的實(shí)用性。4.由于接收載機(jī)平臺(tái)和發(fā)射載機(jī)平臺(tái)之間復(fù)雜的幾何配置,機(jī)載雙基地雷達(dá)雜波呈現(xiàn)強(qiáng)烈的距離依賴性,空時(shí)自適應(yīng)處理(STAP)所需要的雜波協(xié)方差矩陣的估計(jì)誤差變大,這直接會(huì)導(dǎo)致STAP算法檢測(cè)性能的惡化。針對(duì)這一問(wèn)題,提出了一種機(jī)載雙基地雷達(dá)雜波預(yù)濾波方法。該方法考慮了實(shí)際中載機(jī)速度的估計(jì)與真實(shí)速度的誤差,利用雷達(dá)系統(tǒng)參數(shù)、載機(jī)平臺(tái)速度等信息設(shè)計(jì)雜波預(yù)濾波器抑制大部分雜波,剩余的少量雜波可由發(fā)展成熟的空時(shí)自適應(yīng)處理算法進(jìn)行抑制,進(jìn)而提高STAP算法的動(dòng)目標(biāo)檢測(cè)能力。計(jì)算機(jī)仿真實(shí)驗(yàn)表明,該方法能有效的對(duì)幾種典型幾何配置下的機(jī)載雙基地雷達(dá)雜波進(jìn)行抑制,降低雜波自由度,后續(xù)級(jí)聯(lián)能進(jìn)一步改善STAP算法的動(dòng)目標(biāo)檢測(cè)性能。5.在空時(shí)自適應(yīng)處理中,相對(duì)于處理器自由度,雜波協(xié)方差矩陣是低秩的。根據(jù)這一原理,提出了一種利用低秩雜波子空間的雜波對(duì)消器(LRCC)以抑制地面強(qiáng)雜波,該方法利用相對(duì)較少的線性無(wú)關(guān)空時(shí)導(dǎo)向矢量構(gòu)造出原雜波,然后再對(duì)消相鄰脈沖間的雜波回波。該雜波對(duì)消器可以作為預(yù)濾波器和傳統(tǒng)空時(shí)匹配或者空時(shí)自適應(yīng)算法級(jí)聯(lián)以增強(qiáng)后續(xù)動(dòng)目標(biāo)檢測(cè)算法的性能。仿真結(jié)果表明,該方法在正側(cè)視和非正側(cè)視機(jī)載雷達(dá)中能有效抑制地雜波而對(duì)動(dòng)目標(biāo)信號(hào)沒(méi)有影響。該雜波對(duì)消器作為預(yù)濾波器,可以提高后續(xù)空時(shí)匹配或空時(shí)自適應(yīng)處理算法的動(dòng)目標(biāo)檢測(cè)性能。
[Abstract]:With flexible, airborne early warning radar coverage range and other advantages play an important role in the modern war. However, because the plane moving fast, facing the airborne radar clutter environment is more complex than the ground-based radar. Adaptive processing method combined clutter suppression of air in space and time when (Space-time adaptive processing. STAP) can effectively inhibit the airborne radar clutter and detect targets. However, in practical application, full dimensional STAP method will have problems of large amount of calculation and training demand. And these problems to further promote the development of some sub optimal dimensionality reduction or reduced rank STAP method. Due to the lack of independent and identical distribution the actual environment of the training samples, so far, there is not any reduction or reduced rank STAP method can be effectively applied to airborne radar in practical. Therefore, considering the actual ring Exit in the limited number of training samples and the real-time processing of radar system, we have investigated the small amount of calculation and dimension reduction STAP method has the advantages of less demand. The number of training samples before the space-time adaptive processing for clutter filter can effectively reduce the clutter degree of freedom (Degrees of, freedom, Do Fs), this pretreatment could improve the performance of the subsequent STAP method, because the adaptive processor has more freedom to detect targets. Therefore, we according to the clutter model of airborne radar with low computational complexity, without training effect of non adaptive clutter filtering method. Our main work includes the following several aspects: 1. in order to improve after Doppler adaptive processing method in array under the condition of clutter suppression and moving target detection, we propose a domain decomposition based on Doppler Adaptive processing method. Firstly, the received clutter and target data through the Doppler filter, spatial data after filtering decomposition, and then the right coefficient of FA or EFA into the form of separation, so as to get a pair of two times the cost function, and then solving the weight coefficient by cyclic iterative method. Experimental results show that the method with fast convergence, in the small sample, a large array under the condition of the method is better than factor method and expansion factor method.2. the antenna airborne MIMO radar using small scale to form a virtual array aperture greatly, and has high angular resolution and strong ability to suppress clutter, in recent years has attracted great attention of many researchers and engineering the airborne MIMO radar system. But because of the degree of freedom is too high, compared with the traditional STAP method for airborne phased array radar, MIMO-STAP will need more training samples and calculation Volume. Therefore, we study a kind of MIMO-STAP can significantly reduce the required number of training samples and the amount of calculation of two spatial decomposition method. Firstly, the received clutter and target data through the Doppler filter, the adaptive weighting coefficients of decomposition, so that it becomes a product of several Kronecker vector, and then use the thought to solve the adaptive weight iteration. The experiments show that this method has fast convergence, in the method of Doppler treatment is obviously superior to the traditional method of small sample of the large array of.3. under the conditions of the airborne radar two dimensional two pulse canceller (Two-dimension pulse-to-pulse, canceller, TDPC) can effectively suppress the clutter clutter along the track and have no effect on the target signal, and the subsequent cascade STAP method, STAP method can effectively improve the target detection performance, not only for the Yu Zheng side looking airborne radar, is also suitable for the non side looking airborne radar Da. And this method only uses radar parameters and aircraft speed prior knowledge, the filter coefficients can be calculated in advance, has the advantages of small calculation amount is not affected by the influence of the training samples. But in practice, the influence of various factors, the radar parameter estimation may and the actual errors. Therefore, considering the influence of parameter errors, we study a robust TDPC (Robust TDPC RTDPC) method. This method considers the error estimation parameters, using radar parameters, aircraft speed and other information platform design clutter pre filter to suppress most clutter, a small amount of residual clutter may be reduced by the development of mature STAP method for suppression. The method enhances the original TDPC method under the condition of error robustness in parameter, further improve the practicability of.4. TDPC method for receiving aircraft platform And the launch vehicle complex geometric configuration platform between airborne bistatic radar clutter has a strong dependence on distance, space-time adaptive processing (STAP) error estimation of the clutter covariance matrix to change, this will directly lead to deterioration of the detection performance of the STAP algorithm. This paper proposes a airborne bistatic radar clutter filtering method. This method considers the error estimation of actual load machine speed and actual speed, the use of radar system parameters, aircraft speed and other information platform design clutter pre filter to suppress most clutter, a small amount of residual clutter may be developed by space-time adaptive processing algorithm inhibition, and improve the target detection ability of STAP algorithm. Simulation results show that this method can be effective for some typical configurations of the airborne bistatic radar clutter suppression, reducing clutter The wave of freedom, will further improve the subsequent level STAP algorithm.5. moving target detection performance in space-time adaptive processing, relative to processor freedom, the clutter covariance matrix is low rank. According to this principle, proposes the use of a low rank clutter subspace clutter canceller (LRCC) to suppression of the strong ground clutter, the method using linear relatively independent space-time steering vector to construct the original clutter cancellation, then adjacent pulses between clutter. The clutter canceller can be used as a pre filter and the traditional space-time matching or space-time adaptive algorithm to enhance the performance of target follow-up cascade detection algorithm. The simulation results show that this method is in the side and non side looking airborne radar can effectively suppress the ground clutter and moving target signal has no effect. The clutter canceller as a pre filter, can increase the space time, or empty The dynamic target detection performance of time adaptive processing algorithm.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN957.51;TN713
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 文小琴;韓崇昭;;實(shí)測(cè)數(shù)據(jù)的降秩空時(shí)自適應(yīng)處理方法[J];系統(tǒng)工程與電子技術(shù);2006年02期
2 ;《空時(shí)自適應(yīng)處理原理》(第3版)已經(jīng)出版[J];數(shù)據(jù)采集與處理;2009年03期
3 杜文韜;廖桂生;楊志偉;;極化空時(shí)自適應(yīng)處理性能分析[J];西安電子科技大學(xué)學(xué)報(bào);2014年01期
4 邵銀波;李強(qiáng);王永良;陳輝;肖奚安;;空時(shí)自適應(yīng)處理的通用平臺(tái)設(shè)計(jì)與實(shí)現(xiàn)[J];電子與信息學(xué)報(bào);2006年02期
5 劉聰鋒;廖桂生;;不敏空時(shí)自適應(yīng)處理算法[J];系統(tǒng)工程與電子技術(shù);2009年02期
6 曾偉一;唐斌;曾友州;陳客松;;提高空時(shí)自適應(yīng)處理穩(wěn)健性的一種新方法[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
7 楊志偉;賀順;廖桂生;歐陽(yáng)繕;;任意線陣的直接數(shù)據(jù)域空時(shí)自適應(yīng)處理方法[J];電子學(xué)報(bào);2011年12期
8 費(fèi)朗索瓦·施瓦利艾;馬克·蒙德哥;洛享·撒威;;空時(shí)自適應(yīng)處理導(dǎo)論:雷達(dá)環(huán)境與支柱(英文)[J];雷達(dá)科學(xué)與技術(shù);2012年04期
9 ;“空時(shí)自適應(yīng)處理”專刊征文通知[J];雷達(dá)學(xué)報(bào);2013年02期
10 張燕;馬亮;陳春芳;;空時(shí)自適應(yīng)處理算法性能影響因素分析[J];制導(dǎo)與引信;2013年04期
相關(guān)會(huì)議論文 前2條
1 李雙勛;程翥;歐建平;皇甫堪;;一種高維空時(shí)自適應(yīng)處理的快速實(shí)現(xiàn)方法[A];無(wú)線傳感器網(wǎng)及網(wǎng)絡(luò)信息處理技術(shù)——2006年通信理論與信號(hào)處理年會(huì)論文集[C];2006年
2 吳仁彪;徐如蘭;盧丹;;基于同態(tài)濾波的GPS空時(shí)自適應(yīng)處理補(bǔ)償技術(shù)[A];第一屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集(上)[C];2010年
相關(guān)博士學(xué)位論文 前4條
1 周延;機(jī)載雷達(dá)降維空時(shí)自適應(yīng)處理方法及雜波預(yù)濾波技術(shù)研究[D];西安電子科技大學(xué);2015年
2 項(xiàng)建弘;基于空時(shí)自適應(yīng)處理的GPS調(diào)零技術(shù)應(yīng)用研究[D];哈爾濱工程大學(xué);2009年
3 向聰;陣列自適應(yīng)波束形成及空時(shí)自適應(yīng)處理方法研究[D];西安電子科技大學(xué);2012年
4 黨博;機(jī)載雙基地MIMO雷達(dá)波形設(shè)計(jì)與空時(shí)自適應(yīng)處理研究[D];西安電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前7條
1 陳華彬;基于知識(shí)輔助的機(jī)載雷達(dá)雜波仿真與抑制方法研究[D];西安電子科技大學(xué);2014年
2 陳熠;高超聲速平臺(tái)載雷達(dá)空時(shí)自適應(yīng)處理方法研究[D];西安電子科技大學(xué);2013年
3 周成家;基于TS201的空時(shí)自適應(yīng)處理算法研究及工程實(shí)現(xiàn)[D];國(guó)防科學(xué)技術(shù)大學(xué);2011年
4 李強(qiáng);基于空時(shí)自適應(yīng)處理的廣域MTI技術(shù)研究[D];南京航空航天大學(xué);2009年
5 褚天琦;基于空時(shí)自適應(yīng)處理的展寬海雜波抑制[D];哈爾濱工業(yè)大學(xué);2014年
6 柴睿;雙基地MIMO雷達(dá)空時(shí)自適應(yīng)處理方法研究[D];西安電子科技大學(xué);2013年
7 李崇;機(jī)載前視稀布機(jī)頭翼陣動(dòng)目標(biāo)檢測(cè)[D];西安電子科技大學(xué);2014年
,本文編號(hào):1749965
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1749965.html