卡爾曼濾波器在多元信號融合中的應(yīng)用研究
本文選題:卡爾曼濾波器 切入點:煤發(fā)熱量 出處:《華北電力大學(xué)》2017年碩士論文
【摘要】:隨以風(fēng)電為代表的可再生能源規(guī);⒕W(wǎng),火電機(jī)組調(diào)峰調(diào)頻任務(wù)日益艱巨。為快速響應(yīng)發(fā)電負(fù)荷指令變化同時保證機(jī)組安全、經(jīng)濟(jì)、環(huán)保運行,需要對機(jī)組關(guān)鍵系統(tǒng)進(jìn)行更加有效的監(jiān)視和控制。對象關(guān)鍵狀態(tài)參數(shù)測不到或測不準(zhǔn)一直是困擾狀態(tài)檢測和優(yōu)化控制的難題。事實上,如煤發(fā)熱量、鍋爐效率、熱量信號等許多測量或軟測量信號無法同時滿足準(zhǔn)確性和實時性的要求。針對同一信號,采用某種測量方法得到的結(jié)果靜態(tài)誤差小但動態(tài)誤差大,而采用另外一種測量方法得到的結(jié)果動態(tài)誤差小但靜態(tài)誤差大?柭鼮V波器在組合導(dǎo)航中獲得成功應(yīng)用。GPS定位信號靜態(tài)準(zhǔn)確度好但實時性差,慣性定位信號實時性好但靜態(tài)準(zhǔn)確度差,卡爾曼濾波器發(fā)揮兩者優(yōu)點,獲得既準(zhǔn)又快的綜合定位信號。將這種方法借鑒到多元熱工信號融合領(lǐng)域。以現(xiàn)場入爐煤發(fā)熱量測量為例分析了不同測量方法的特點:實驗室化驗結(jié)果靜態(tài)準(zhǔn)確度高,但測量結(jié)果為離散點且存在滯后;利用鍋爐效率正反平衡分析方法相結(jié)合得到的結(jié)果,機(jī)組穩(wěn)定運行工況下準(zhǔn)確度高,但變負(fù)荷工況時存在巨大的動態(tài)誤差;制粉系統(tǒng)熱力計算結(jié)合煙氣成份分析得到結(jié)果也只在穩(wěn)定工況下有效;而基于機(jī)組發(fā)電負(fù)荷-機(jī)前壓力簡化非線性動態(tài)模型構(gòu)造的結(jié)果,能夠較快反映煤發(fā)熱量變化情況但靜態(tài)基準(zhǔn)值難以確定。不同的方法在靜態(tài)準(zhǔn)確度和實時性上各有特點,在此,研究了兩種煤發(fā)熱量信息融合方法:(1)結(jié)合卡爾曼濾波預(yù)估-校正實質(zhì),利用實驗室化驗法得到的煤發(fā)熱量的數(shù)據(jù),實時修正基于機(jī)組負(fù)荷-壓力模型動態(tài)法得到的實時煤發(fā)熱量值。(2)針對動態(tài)法和基于制粉系統(tǒng)熱力計算結(jié)合煙氣成份分析得到結(jié)果的靜態(tài)法在實時性和靜態(tài)精度上互補(bǔ)的特點,對其進(jìn)行信息融合。利用機(jī)組實時運行數(shù)據(jù)驗證,得到靜態(tài)準(zhǔn)確度和動態(tài)誤差均小于4%的綜合發(fā)熱量信號,能夠滿足工程實用要求。
[Abstract]:With the large-scale grid connection of renewable energy represented by wind power, the task of peak shaving and frequency modulation of thermal power units is becoming increasingly arduous. In order to quickly respond to the change of power generation load and ensure the safety, economy and environmental protection of the units, It is necessary to monitor and control the key system of the unit more effectively. It is a difficult problem for the state detection and optimization control that the key state parameter of the object can not be measured or uncertain. In fact, the boiler efficiency, such as coal calorific value, boiler efficiency, etc. Many measuring or soft measuring signals such as heat signal can not meet the requirements of accuracy and real-time simultaneously. For the same signal, the static error is small but the dynamic error is large. However, the dynamic error is small but the static error is large by using another measuring method. The Kalman filter has been successfully used in integrated navigation. The GPS positioning signal has good static accuracy but poor real-time performance. Inertial positioning signal has good real-time performance but poor static accuracy, and Kalman filter has the advantages of both. This method is used for reference in the field of multi-element thermal signal fusion. The characteristics of different measurement methods are analyzed by taking the measurement of calorific value of coal in situ as an example: the static accuracy of laboratory test results is high. However, the measurement results are discrete points and lag, and the results obtained by combining the positive and negative balance analysis method of boiler efficiency show that the accuracy of the unit is high under stable operating conditions, but there is a huge dynamic error under variable load conditions. The results obtained from the thermodynamic calculation of pulverizing system combined with the analysis of flue gas composition are only valid under steady working conditions, but based on the results of simplified nonlinear dynamic model construction of generating load-front pressure of generating units, It can reflect the change of coal calorific value quickly, but the static reference value is difficult to determine. Different methods have their own characteristics in static accuracy and real time. This paper studies two fusion methods of coal calorific value information: 1) combined with Kalman filter prediction-correction essence, using the data of coal calorific value obtained by laboratory test method. Real-time correction is based on the real-time coal calorific value obtained by the dynamic method of unit load-pressure model. Aiming at the characteristics of the dynamic method and the static method which is based on the thermodynamic calculation of the pulverizing system combined with the smoke composition analysis, the real-time and static accuracy of the method are complementary. By using the real-time operation data of the unit, the integrated calorific signal with static accuracy and dynamic error less than 4% is obtained, which can meet the practical requirements of engineering.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM621;TN713
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝曉輝;劉鑫屏;邊防;張全;;基于卡爾曼濾波的燃煤發(fā)熱量動態(tài)軟測量方法[J];熱力發(fā)電;2016年10期
2 郝曉輝;劉鑫屏;洪雨楠;;煤發(fā)熱量實時校正方法研究[J];電力科學(xué)與工程;2016年05期
3 卞和營;方彥軍;;基于支持向量回歸的飛灰含碳量軟測量[J];熱力發(fā)電;2014年10期
4 田婭菲;趙文杰;田嵐;;火電機(jī)組快速響應(yīng)負(fù)荷指令的優(yōu)化設(shè)計[J];自動化與儀表;2014年01期
5 葉學(xué)民;王佳;李春曦;;基于熵分析的新能源集成火電機(jī)組減排性能研究[J];中國電機(jī)工程學(xué)報;2013年S1期
6 王琪;劉吉臻;劉鑫屏;田亮;;2種煤發(fā)熱量軟測量方法對比分析及改進(jìn)方案[J];中國電力;2012年03期
7 劉長良;孫曉嬌;劉站營;;支持向量機(jī)在鍋爐飛灰含碳量軟測量中的應(yīng)用[J];電力科學(xué)與工程;2010年01期
8 張貴煒;鮑琳;李奇?zhèn)?;基于信息融合的火電廠飛灰含碳量的軟測量建模[J];信息與控制;2009年06期
9 程啟明;郭瑞青;杜許峰;鄭勇;;火電廠煙氣含氧量測量的現(xiàn)狀與發(fā)展[J];電站系統(tǒng)工程;2008年06期
10 劉鑫屏;田亮;曾德良;劉吉臻;;基于機(jī)組負(fù)荷-壓力動態(tài)模型的燃煤發(fā)熱量實時計算方法[J];動力工程;2008年01期
相關(guān)博士學(xué)位論文 前3條
1 曲亞鑫;基于歷史數(shù)據(jù)的偏最小二乘建模方法研究與應(yīng)用[D];華北電力大學(xué);2012年
2 朱紅路;熱工信號自適應(yīng)濾波及其在建模與控制中的應(yīng)用[D];華北電力大學(xué)(北京);2010年
3 趙征;基于信息融合的鍋爐燃燒狀態(tài)參數(shù)檢測技術(shù)研究[D];華北電力大學(xué)(河北);2007年
相關(guān)碩士學(xué)位論文 前6條
1 洪博;大型火電機(jī)組負(fù)荷系統(tǒng)的建模與優(yōu)化控制策略研究[D];華北電力大學(xué);2015年
2 楊丹;卡爾曼濾波器設(shè)計及其應(yīng)用研究[D];湘潭大學(xué);2014年
3 武現(xiàn)聰;基于狀態(tài)觀測器的熱工參數(shù)軟測量方法研究[D];華北電力大學(xué);2014年
4 馮祥凱;火電機(jī)組機(jī)爐協(xié)調(diào)控制系統(tǒng)研究與分析[D];華北電力大學(xué);2012年
5 邱鳳云;Kalman濾波理論及其在通信與信號處理中的應(yīng)用[D];山東大學(xué);2008年
6 李大威;卡爾曼濾波在INS/GPS組合導(dǎo)航中的應(yīng)用研究[D];中北大學(xué);2006年
,本文編號:1671168
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1671168.html