基于MEMS技術硅磁敏三極管差分結構制作及特性研究
發(fā)布時間:2018-03-02 01:21
本文關鍵詞: 集成化 硅磁敏三極管差分結構 MEMS技術 磁靈敏度 溫度系數(shù) 出處:《黑龍江大學》2015年碩士論文 論文類型:學位論文
【摘要】:本文在分析立體結構硅磁敏三極管基本結構、工作原理和特性基礎上,給出集成化硅磁敏三極管差分結構,該集成化結構由兩個相反磁敏感方向的硅磁敏三極管(T-1管和T-2管)和集電極負載電阻構成,包括一個發(fā)射極(E)、兩個基極(B1、B2)、兩個集電極(C1、C2)和兩個集電極負載電阻(RL1、RL2)。理論分析給出,該結構能夠實現(xiàn)外加磁場測量且磁靈敏度得到提高,根據(jù)基本結構,采用ATLAS軟件構建硅磁敏三極管差分結構仿真模型,分別研究基區(qū)長度L和基區(qū)寬度w對集成化硅磁敏三極管差分結構磁特性的影響,實現(xiàn)結構尺寸優(yōu)化;谏鲜,本文采用MEMS技術在P型100晶向雙面拋光高阻單晶硅襯底上制作硅磁敏三極管差分結構集成化芯片。室溫條件下,通過采用半導體特性分析系統(tǒng)(KEITHLEY 4200)、磁場發(fā)生器系統(tǒng)(CH-1)和高低溫試驗箱(奧貝斯GDJS-100LG-G),分別對單個硅磁敏三極管和硅磁敏三極管差分結構集成化芯片進行IC-VCE特性、磁特性和溫度特性測試。當VDD=10.0 V,IB=8.0 mA時,基區(qū)長度L為150μm的單個硅磁敏三極管和硅磁敏三極管差分結構集成化芯片的集電極電壓絕對磁靈敏度分別為259 mV/T和443mV/T,集電極電壓相對溫度系數(shù)分別為116.0 ppm/℃和54.4 ppm/℃,實驗結果表明硅磁敏三極管集成化差分結構可以提高磁靈敏度和改善溫度特性。在此基礎上,研究基區(qū)長度對集成化芯片IC-VCE特性和磁特性的影響,當VDD=6.0 V,IB=8.0 mA時,基區(qū)長度分別為120μm、150μm和180μm硅磁敏三極管差分結構集成化芯片集電極電壓絕對磁靈敏度為435 mV/T、390 mV/T和327 mV/T,故基區(qū)長度為120μm的集成化芯片具有較優(yōu)的磁敏特性。
[Abstract]:Based on the analysis of the basic structure, working principle and characteristics of the stereoscopic silicon magnetic sensing transistor, the differential structure of the integrated silicon magnetic sensing transistor is presented in this paper. The integrated structure consists of two silicon magnetically sensitive transistors in opposite directions: T-1 and T-2) and collector load resistors, including an emitter, two base electrodes, two base electrodes, two collector electrodes, two collector electrodes, two collector electrodes, and two collector loaded resistors, RL1 and RL2.The theoretical analysis shows that, The structure can realize the measurement of external magnetic field and the magnetic sensitivity is improved. According to the basic structure, the differential structure simulation model of silicon magnetic sensitive transistor is constructed by using ATLAS software. The effects of base length L and base width w on the magnetic characteristics of the differential structure of integrated silicon magnetic-sensitive transistor are studied respectively to optimize the structure size. In this paper, MEMS technology is used to fabricate the differential structure integrated silicon magnetic-sensitive transistor on P-type 100 crystal double-sided polished high resistance monocrystalline silicon substrate. At room temperature, the silicon magnetic-sensitive transistor is fabricated at room temperature. By using the semiconductor characteristic analysis system KEITHLEY 4200, the magnetic field generator system CH-1) and the high and low temperature test box (OBES GDJS-100LG-GN), the IC-VCE characteristics of the single silicon magnetic-sensitive transistor and the differential structure integrated chip of the silicon magnetic-sensitive transistor are carried out, respectively. Testing of magnetic and temperature characteristics. When the VDD=10.0 vane is 8.0 Ma, The collector voltage absolute magnetic sensitivity of a single silicon magnetic sensing transistor with a base length L of 150 渭 m and that of a differential integrated silicon magnetic transistor is 259 mV/T and 443 MV / T, respectively. The relative temperature coefficient of collector voltage is 116.0 ppm / 鈩,
本文編號:1554429
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1554429.html
教材專著