熱機(jī)偏轉(zhuǎn)紅外探測(cè)關(guān)鍵技術(shù)研究
發(fā)布時(shí)間:2018-02-07 16:28
本文關(guān)鍵詞: 紅外探測(cè) 微懸臂梁 有基底的紅外焦平面陣列 氮化硅 出處:《西安工業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:紅外探測(cè)器在軍事和民用、醫(yī)療、安全防衛(wèi)等領(lǐng)域應(yīng)用非常廣泛,成為各國(guó)高科技成像追逐的熱點(diǎn),尤其是近年來對(duì)采用光學(xué)讀出系統(tǒng)同時(shí)選用微懸臂梁結(jié)構(gòu)焦平面陣列的紅外成像技術(shù)做了多項(xiàng)研究。本文提出的是一種使用光學(xué)讀出方式的熱型紅外探測(cè)系統(tǒng),其中紅外探測(cè)器件是基于雙材料的熱機(jī)偏轉(zhuǎn)原理設(shè)計(jì)出一種微懸臂梁結(jié)構(gòu)的探測(cè)敏感單元。文中重點(diǎn)對(duì)氮化硅薄膜進(jìn)行了應(yīng)力特性和紅外特性方面的研究,同時(shí)研究了紅外探測(cè)器件的制作工藝。獲得主要結(jié)果如下;1)設(shè)計(jì)基于雙材料梁熱機(jī)偏轉(zhuǎn)的紅外探測(cè)器件:以K9玻璃為基底,器件陣列為120×120,單元尺寸為40μm×40μm。紅外探測(cè)器件的結(jié)構(gòu)較簡(jiǎn)單,增加了反光板的面積和紅外輻射的吸收面積。2)研究氮化硅薄膜的應(yīng)力特性、紅外吸收特性和刻蝕特性:實(shí)驗(yàn)中改變PECVD的射頻功率、反應(yīng)壓強(qiáng)等工藝參數(shù),氮化硅薄膜表現(xiàn)出不同的應(yīng)力。薄膜厚度約為600nm時(shí),壓應(yīng)力的最小值是65MPa;調(diào)整PECVD射頻功率、反應(yīng)時(shí)間等工藝參數(shù),氮化硅厚度約600nm時(shí),薄膜的相對(duì)吸收強(qiáng)度最大約為4.0;調(diào)整ICP的功率、反應(yīng)壓強(qiáng)等工藝參數(shù),薄膜最大刻蝕速率達(dá)到14.5nm/s, Si3N4/EPG533最大刻蝕選擇比接近4.25。3)研究探測(cè)器件的制造工藝:采用光刻技術(shù)、磁控濺射技術(shù)和PECVD技術(shù)、ICP刻蝕技術(shù)等多種MEMS工藝分別制備犧牲層、反光層和紅外吸收層。實(shí)驗(yàn)中最佳工藝參數(shù)為:制備金膜層時(shí),濺射功率80W,氬氣流量85mL/min,氣壓1Pa;制備氮化硅薄膜時(shí),PECVD沉積溫度250℃C,射頻功率180W,反應(yīng)壓強(qiáng)60Pa, SiH4流量40mL/min, N2流量60mL/min;刻蝕氮化硅薄膜時(shí),ICP功率300W、偏壓功率70W、反應(yīng)壓強(qiáng)30mTrr、SF6流量30mL/min、O2流量13 mL/min。
[Abstract]:Infrared detectors are widely used in military, civil, medical, security and defense fields, and have become a hot spot for high-tech imaging in various countries. In particular, in recent years, many studies have been done on infrared imaging technology with optical readout system and microcantilever structure focal plane array. In this paper, a thermal infrared detection system using optical readout mode is proposed. The infrared detector is based on the thermal mechanical deflection principle of two materials to design a kind of detection sensitive unit of the micro-cantilever structure. The stress and infrared characteristics of the silicon nitride thin film are studied in this paper. At the same time, the fabrication technology of infrared detector is studied. The main results are as follows: (1) the infrared detector based on bimaterial beam thermal mechanical deflection is designed, which is based on K9 glass. The device array is 120 脳 120 and the unit size is 40 渭 m 脳 40 渭 m. The structure of the infrared detector is simple, which increases the area of the reflector and the absorption area of infrared radiation. Infrared absorption and etching characteristics: the silicon nitride film exhibits different stresses by changing the RF power and reaction pressure of PECVD. When the thickness of the film is about 600 nm, the minimum compressive stress is 65 MPA, and the RF power of PECVD is adjusted. When the thickness of Si _ 3N _ 4 is about 600nm, the maximum relative absorption intensity of the film is about 4.0, and the process parameters such as the power of ICP, reaction pressure and so on are adjusted. The maximum etching rate of the thin film is 14.5 nm / s and the maximum etching selection ratio of Si3N4/EPG533 is nearly 4.25.3) the fabrication process of the detector is studied. The sacrificial layers are prepared by various MEMS processes, such as photolithography, magnetron sputtering and PECVD etching. Reflective layer and infrared absorption layer. The optimum technological parameters in the experiment are: when the gold film is prepared, Sputtering power is 80W, ar flow rate is 85mL / min, pressure is 1Pa.The deposition temperature of silicon nitride film is 250 鈩,
本文編號(hào):1494809
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1494809.html
最近更新
教材專著