光學(xué)元件吸收損耗的高靈敏度檢測(cè)技術(shù)研究
本文關(guān)鍵詞: 激光量熱技術(shù) 大口徑光學(xué)元件 吸收 激光誘導(dǎo)偏轉(zhuǎn)技術(shù) 定標(biāo)誤差 熱變形 表面熱透鏡技術(shù) 光熱偏轉(zhuǎn)技術(shù) 靈敏度 構(gòu)型優(yōu)化 出處:《中國(guó)科學(xué)院研究生院(光電技術(shù)研究所)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:激光技術(shù)的不斷發(fā)展對(duì)光學(xué)元件的性能提出了越來(lái)越高的要求。尤其在高功率激光系統(tǒng)中,光學(xué)元件的吸收損耗是限制其進(jìn)一步發(fā)展的一個(gè)重要因素。而光學(xué)元件吸收損耗的準(zhǔn)確測(cè)量,對(duì)于優(yōu)化鍍膜工藝、降低薄膜吸收損耗具有重要的意義。因此,本文圍繞吸收損耗的高靈敏檢測(cè)技術(shù)展開(kāi)研究工作。針對(duì)大口徑光學(xué)元件提出了激光量熱法測(cè)量其吸收損耗的方法。首先建立了大口徑光學(xué)元件的溫升模型,用于分析樣品表面溫升數(shù)據(jù),計(jì)算大口徑光學(xué)元件的吸收損耗。使用該溫度模型分析了激光量熱法測(cè)量大口徑光學(xué)元件吸收損耗的測(cè)量靈敏度以及溫度探測(cè)位置誤差對(duì)測(cè)量結(jié)果的影響。激光誘導(dǎo)偏轉(zhuǎn)技術(shù)中使用了電阻加熱定標(biāo)方法實(shí)現(xiàn)了光學(xué)元件吸收損耗的絕對(duì)測(cè)量。為分析電阻加熱定標(biāo)方法的定標(biāo)誤差,建立了方形平頂激光輻照和電阻加熱激勵(lì)下光學(xué)樣品溫升的理論模型和有限元模型。理論上分析了激光誘導(dǎo)偏轉(zhuǎn)信號(hào)和相應(yīng)定標(biāo)誤差與探測(cè)激光位置的關(guān)系并提出了減小定標(biāo)誤差的方法。從表面熱透鏡技術(shù)的理論出發(fā),提出了使用短波長(zhǎng)探測(cè)激光提高表面熱透鏡技術(shù)測(cè)量靈敏度的方法并使用三個(gè)不同波長(zhǎng)的探測(cè)激光進(jìn)行了實(shí)驗(yàn)驗(yàn)證。理論和實(shí)驗(yàn)結(jié)果表明:最佳探測(cè)距離和相應(yīng)的表面熱透鏡信號(hào)都與波長(zhǎng)成反比。使用紫外激光作為探測(cè)光光源可以有效提高表面熱透鏡信號(hào)的測(cè)量靈敏度。建立了基于菲涅爾衍射理論的光熱偏轉(zhuǎn)信號(hào)的精確理論模型,得到了光熱偏轉(zhuǎn)信號(hào)的表達(dá)式和光熱偏轉(zhuǎn)信號(hào)的構(gòu)型優(yōu)化參數(shù)。此外,開(kāi)展了光熱偏轉(zhuǎn)技術(shù)實(shí)驗(yàn),分析了探測(cè)激光光斑、束腰位置、波長(zhǎng)以及探測(cè)距離對(duì)光熱偏轉(zhuǎn)信號(hào)的影響。理論和實(shí)驗(yàn)結(jié)果表明,最優(yōu)探測(cè)距離完全依賴于探測(cè)激光的束腰位置和探測(cè)激光波長(zhǎng),通過(guò)優(yōu)化探測(cè)激光光斑半徑和探測(cè)距離以及使用短波長(zhǎng)探測(cè)激光可以有效增大光熱偏轉(zhuǎn)技術(shù)的測(cè)量靈敏度。
[Abstract]:With the development of laser technology, the performance of optical components is required more and more, especially in high-power laser systems. The absorption loss of optical elements is an important factor limiting its further development. The accurate measurement of absorption loss of optical elements is of great significance for optimizing the coating process and reducing the absorption loss of films. In this paper, the high sensitive measurement of absorption loss is studied. A method of measuring absorption loss by laser calorimetry is proposed for large aperture optical elements. Firstly, the temperature rise model of large aperture optical elements is established. Used to analyze surface temperature rise data of samples. The absorption loss of large aperture optical elements is calculated. The sensitivity of laser calorimetric method for measuring absorption loss of large aperture optical elements and the influence of temperature detection position error on the measurement results are analyzed by using the temperature model. The resistive heating calibration method is used to realize the absolute measurement of absorption loss of optical elements in the induced deflection technique, and the calibration error of the resistive heating calibration method is analyzed. The theoretical model and finite element model of temperature rise of optical samples excited by square flat-top laser irradiation and resistance heating are established. The relationship between laser induced deflection signal and corresponding calibration error and laser position detection is analyzed theoretically. The method of reducing calibration error is given, which is based on the theory of surface thermal lens technology. In this paper, a method of improving the sensitivity of surface thermal lens technique by using short wavelength detection laser is proposed, and the experimental results of three different wavelengths of detection laser are verified. The theoretical and experimental results show that:. The optimum detection distance and the corresponding surface thermal lens signal are inversely proportional to the wavelength. The sensitivity of the surface thermal lens signal can be improved effectively by using the ultraviolet laser as the detecting light source. The Fresnel diffraction theory is established. The exact theoretical model of the photothermal deflection signal based on the. The expression of the photothermal deflection signal and the optimized configuration parameters of the photothermal deflection signal are obtained. In addition, the experiment of photothermal deflection technique is carried out, and the detection of laser spot and the position of beam waist are analyzed. The theoretical and experimental results show that the optimal detection distance is completely dependent on the beam waist position and the detection wavelength of the laser. By optimizing the detection of laser spot radius and detection distance and using short wavelength laser detection, the measurement sensitivity of photothermal deflection technology can be increased effectively.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(光電技術(shù)研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN249
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡春平;光纖的光吸收損耗[J];應(yīng)用光學(xué);1994年03期
2 趙勇;孟慶堯;;氫與光纖的物化反應(yīng)對(duì)井下永久性測(cè)量的影響[J];光電工程;2007年09期
3 姚騰鴻;用VAD方法制造超低OH含量的光纖[J];激光通信;1981年01期
4 王桂芬,馬根源,陳衛(wèi),,顧立群,張光寅;測(cè)量光纖吸收損耗和散射損耗的一種簡(jiǎn)單有效方法[J];南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版);1995年04期
5 ;其他[J];中國(guó)光學(xué)與應(yīng)用光學(xué)文摘;2008年02期
6 歸振興;沈俊泉;陳鈺明;奚全新;沈華勤;張順怡;;閉環(huán)橫流CO_2激光器中突變吸收損耗機(jī)理的研究[J];激光技術(shù);1992年02期
7 宋擁軍,費(fèi)雄駿;衛(wèi)星通信大氣吸收損耗的計(jì)算方法[J];無(wú)線電通信技術(shù);2000年06期
8 趙洪林;童玲玲;王鋼;王磊;;海上微波信道的傳輸特性[J];哈爾濱理工大學(xué)學(xué)報(bào);2006年02期
9 馬春生,劉式墉;MOS型波導(dǎo)光學(xué)特性分析[J];半導(dǎo)體學(xué)報(bào);1989年04期
10 趙宏太,柳曉軍,王謹(jǐn),曹俊文,趙志,詹明生;腔衰蕩法四腔鏡反射率及腔內(nèi)吸收測(cè)量[J];激光與光電子學(xué)進(jìn)展;2001年05期
相關(guān)會(huì)議論文 前1條
1 宋永香;;鈥激光器0°全反膜的制備與工藝[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
相關(guān)博士學(xué)位論文 前1條
1 張曉榮;光學(xué)元件吸收損耗的高靈敏度檢測(cè)技術(shù)研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2015年
相關(guān)碩士學(xué)位論文 前1條
1 李爽;遂道結(jié)吸收損耗及其對(duì)新型大功率激光器特性影響的研究[D];北京工業(yè)大學(xué);2000年
本文編號(hào):1454736
本文鏈接:http://www.sikaile.net/kejilunwen/dianzigongchenglunwen/1454736.html