圓柱橋墩繞流的數(shù)值模擬研究
[Abstract]:The flow around a cylinder has always been the object of many theoretical analyses, experimental studies and numerical simulations. However, due to the complexity of the three-dimensional flow around the cylinder, the understanding of the physical nature of the flow phenomenon is still incomplete. In particular, there is no systematic theoretical study on the relationship between the flow around the cylinder and the scour around the cylindrical piers. In this paper, the characteristics of the flow field around the cylindrical pier and the scour characteristics of the pier are studied by using the numerical simulation software of Flow-3D fluid dynamics, and the relationship between the flow around the cylinder and the scour is explored. In order to provide theoretical basis and new research ideas for the study of flow around cylindrical piers and scour. In this paper, the flow around a single cylindrical pier and the scour of the river bed are simulated by using Flow 3D software, and the distribution of the flow field around the pier and the scour characteristics of the river bed are obtained. The results show that: (1) the two-dimensional flow field of the cylindrical pier is close to the two sides, the velocity of flow decreases due to the influence of the side wall of the tank, and the velocity decreases to zero because of the blocking effect of the pier on the flow in front of the pier. After the pier, the flow field becomes smooth and stable with the increase of the flow. (2) when the initial velocity increases, the range of concentrated flow around the pier in front of the pier decreases and the influence range of wake on the back of the pier increases; 3 when the initial velocity is 37cm/s, the maximum velocity of two-dimensional plane reaches 42.3 cm / s, and the two-dimensional velocity distribution of the other two initial velocity has the same law, in which the maximum velocity is 34.4cm / s and 22.2 cm / s, respectively. The longitudinal velocity is the largest in the three-dimensional velocity component. The other two directions have a smaller velocity component but mainly affect the migration direction of the velocity. In this paper, the characteristics of flow around piers under different arrangement modes of water-bearing piers are simulated and analyzed from the aspects of water flow structure, velocity distribution and scour topography. The results show that 1 two rows of 10 piers are arranged in a straight line with different angles between the axial direction and the direction of water flow, and the results are as follows: 1. The pier close to the upstream affects the water flow structure near the downstream pier. The maximum depth of the pier at 60 擄is located at the front row of pier 2, and the maximum value is 11.27 cm at 7.66 cm,t=6s for t ~ (2) 4s, and the water flow structure of the pier near the downstream pier is affected by the bridge pier near the upstream of the pier at 60 擄. The scour depth increases with the increase of time until the scouring and silting balance is finally reached. (2) when the piers are arranged at 90 擄, the velocity of 1 ~ 5 # cylinder has obvious symmetry, and the scour range in front of the middle 3 # pier is the smallest. At 30 擄arrangement, it is found that the flow velocity in front of 1 # pier is obviously higher than that of the other 4 piers, and there is a trend of decreasing gradually, and the oblique dispersion arrangement reduces the water resistance of the pier, and the scour of a row of piers near the left bank is more serious in the 0 擄arrangement, and the flow velocity in front of the pier is obviously higher than that of the other 4 piers. The scour of 1 # and 5 # piers at 30 擄is more serious than that of other piers, and the scour range in front of 2 # and 4 # piers at 60 擄arrangement is larger than that of other piers. In general, through this experimental study, the flow around the pier is simulated by using Flow 3D software. The results obtained are compared with the actual test results, and the two research methods are successfully combined with numerical simulation and practical experiment. The characteristics of the flow distribution and the scour deformation of the river bed are studied and analyzed, which can be used as a reference for similar research in the future.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U442.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王強(qiáng),劉仰韶,鄧桂萍;某受撞擊橋墩工作性能的評(píng)估[J];廣東公路交通;2005年03期
2 梁鍇;方理剛;段靚靚;;沖刷對(duì)橋墩穩(wěn)定性影響的有限元分析[J];巖土力學(xué);2006年09期
3 張海東;;橋墩附近基坑開(kāi)挖對(duì)橋墩基礎(chǔ)影響的數(shù)值分析[J];山西建筑;2011年27期
4 高銀水;;淺談斜坡橋墩設(shè)計(jì)[J];今日科苑;2007年24期
5 謝壽平;;臨近輸油管道橋墩基礎(chǔ)開(kāi)挖爆破方案探討[J];中國(guó)科技信息;2008年20期
6 孫兆強(qiáng);向秀平;尚仲虎;李軍;姚建平;寇廣增;楊志華;高峰;;魏荊輸油管道漢江跨越管橋橋墩基礎(chǔ)加固[J];石油工程建設(shè);2011年05期
7 張建軍;;橋墩沉降及加固方法分析[J];低溫建筑技術(shù);2012年01期
8 覃兆海;陳良志;;大水平力作用下組合墩臺(tái)在引橋墩設(shè)計(jì)中的應(yīng)用[J];港工技術(shù);2009年01期
9 余賢高;吳曉陽(yáng);;橋墩基礎(chǔ)的水下控制爆破[J];采礦技術(shù);2010年04期
10 何繼善,柳建新;綜合物探方法在檢測(cè)橋墩及墩基礎(chǔ)中的應(yīng)用[J];中國(guó)有色金屬學(xué)報(bào);1999年02期
相關(guān)會(huì)議論文 前10條
1 蘭雅梅;劉樺;薛雷平;;橋墩基礎(chǔ)上波流力研究[A];第十二屆中國(guó)海岸工程學(xué)術(shù)討論會(huì)論文集[C];2005年
2 郭興杰;程和琴;王冬梅;楊忠勇;宋澤坤;胡浩;;橋墩周邊流場(chǎng)模擬分析[A];第十六屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)(下冊(cè))[C];2013年
3 楊作興;彭濟(jì)南;劉民;;巖錨加樁處理橋墩下沉開(kāi)裂施工技術(shù)[A];地面巖石工程與注漿技術(shù)學(xué)術(shù)研討會(huì)論文集[C];1997年
4 王樹(shù)卿;;寧岢線(xiàn)48號(hào)橋橋墩病害整治[A];高速重載與普通鐵路橋隧運(yùn)營(yíng)管理與檢測(cè)修理技術(shù)論文集(上冊(cè))[C];2010年
5 蘇文麗;富立彬;李隨敏;鄭來(lái)國(guó);;寧岢線(xiàn)48號(hào)橋橋墩加固整治[A];發(fā)展重載運(yùn)輸技術(shù)適應(yīng)經(jīng)濟(jì)社會(huì)建設(shè)——鐵路重載運(yùn)輸貨車(chē)暨工務(wù)學(xué)術(shù)研討會(huì)論文集(工務(wù)部分)[C];2011年
6 詹建輝;宛勁松;岳磊;;荊州長(zhǎng)江公路大橋通航安全風(fēng)險(xiǎn)評(píng)估及橋墩防撞加固措施研究[A];湖北公路交通防災(zāi)救災(zāi)安保工程專(zhuān)家論壇專(zhuān)輯[C];2008年
7 胡守海;代平玉;宋社強(qiáng);李勝濤;;興隆水利樞紐左岸交通橋9號(hào)橋墩基礎(chǔ)水下高噴加固施工技術(shù)[A];2013水利水電地基與基礎(chǔ)工程技術(shù)——中國(guó)水利學(xué)會(huì)地基與基礎(chǔ)工程專(zhuān)業(yè)委員會(huì)第12次全國(guó)學(xué)術(shù)會(huì)議論文集[C];2013年
8 屈匡時(shí);;蕪湖長(zhǎng)江大橋正橋水中橋墩基礎(chǔ)設(shè)計(jì)[A];第九屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅱ卷[C];2000年
9 丁明波;陳興沖;;客運(yùn)專(zhuān)線(xiàn)橋梁的抗震性能試驗(yàn)研究[A];第十八屆全國(guó)橋梁學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
10 謝建綱;;武漢長(zhǎng)漢公路橋特大型深水橋墩基礎(chǔ)精密控制測(cè)量[A];全國(guó)橋梁結(jié)構(gòu)學(xué)術(shù)大會(huì)論文集(上冊(cè))[C];1992年
相關(guān)重要報(bào)紙文章 前4條
1 黃悅平;除險(xiǎn)加固為韶城橋梁強(qiáng)筋骨[N];韶關(guān)日?qǐng)?bào);2006年
2 記者 裘立華 舒繼華;“優(yōu)良工程”“橋裂裂”,為何無(wú)人被問(wèn)責(zé)[N];新華每日電訊;2010年
3 本報(bào)記者 李江濤 通訊員 左旭;讓每座橋都成為城市景點(diǎn)[N];洛陽(yáng)日?qǐng)?bào);2009年
4 新華社記者 裘立華 舒繼華;優(yōu)良工程何以退化成“橋裂裂”[N];中國(guó)安全生產(chǎn)報(bào);2010年
相關(guān)博士學(xué)位論文 前2條
1 莊元;橋梁通航論證關(guān)鍵技術(shù)研究[D];武漢理工大學(xué);2008年
2 陳楚龍;船撞橋墩仿真分析及下構(gòu)安全概率評(píng)估[D];華中科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 阿不都熱合曼(Shukur Rahman);蘭青線(xiàn)湟水河2號(hào)橋橋墩基礎(chǔ)加固研究[D];西南交通大學(xué);2015年
2 俞艷;山區(qū)河流橋墩基礎(chǔ)沖刷計(jì)算與防護(hù)方法研究[D];西南科技大學(xué);2015年
3 吉鴻敏;圓柱橋墩繞流的數(shù)值模擬研究[D];西北農(nóng)林科技大學(xué);2015年
4 鄭毅;既有鐵路橋墩健全度評(píng)估方法及自振特性研究[D];北京交通大學(xué);2010年
5 許保華;橋墩周?chē)ê綄挾扔绊懷芯縖D];河海大學(xué);2007年
6 郭超;橋墩沖刷與波流力的試驗(yàn)研究[D];清華大學(xué);2012年
7 王坤;海洋深水環(huán)境橋墩基礎(chǔ)抗沖刷技術(shù)研究[D];長(zhǎng)安大學(xué);2013年
8 高蘇;基于有限元法的橋墩對(duì)橋跨橫向振動(dòng)的影響研究[D];東南大學(xué);2006年
9 于哲;城市高架橋梁基礎(chǔ)約束剛度識(shí)別及橋墩抗震性能評(píng)估研究[D];中南大學(xué);2010年
10 劉永吉;考慮流固耦合效應(yīng)的水中橋墩動(dòng)力響應(yīng)分析[D];重慶交通大學(xué);2012年
,本文編號(hào):2456259
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2456259.html