基于IOS的車輛行駛行為識別方法研究與實現(xiàn)
[Abstract]:In recent years, with the rapid development of the national economy and society, the number of vehicles has risen rapidly, and the problem of road traffic safety has been paid more and more attention by the society. Statistical data show that poor driving behavior is the main cause of traffic accidents. It is of guiding significance to analyze the behavior of vehicles in the course of driving to regulate driving behavior, reduce traffic accidents and improve traffic safety. The rapid development of Internet technology and the rich functions of intelligent mobile terminal devices bring convenience to people's life. Smart devices have become an indispensable part of people's lives. Accelerometers and gyroscopes in IOS smart devices can sense the movement and state of devices, and can achieve low-cost data acquisition through these sensors. This paper uses IOS device sensor to collect and recognize the driving behavior of the vehicle, including: changing track, accelerating, decelerating, braking and so on. On this basis, a recognition algorithm based on support vector machine is proposed. The specific work is as follows: 1. Accelerometers and gyroscopes embedded in mobile terminals such as smart phone / pad are used to collect acceleration and angular velocity data during vehicle driving, aiming at the problem of zero drift and high frequency noise caused by vehicle bumps during vehicle driving. Data collected by zero and low pass filter processing. 2. In view of the acceleration and angular velocity data collected during the course of the vehicle moving, accelerating, decelerating and braking, the characteristic vectors, including the difference between the maximum, the minimum, the maximum and the minimum values, are established to characterize the characteristics of the vehicle's behavior, including the maximum, the minimum and the maximum and minimum values of the data. A vehicle behavior classifier based on support vector machine (SVM) is proposed based on mean and variance. An N- 未 sliding window intercepting algorithm is proposed to realize the fast partition of data including multiple behaviors. The experimental test platform is built and the vehicle driving behavior identification method proposed in this paper is tested in the urban road. The test results show that the method can effectively identify the vehicle driving behavior.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U495
【參考文獻】
相關期刊論文 前9條
1 肖獻強;任春燕;王其東;;基于隱馬爾可夫模型的駕駛行為預測方法研究[J];中國機械工程;2013年21期
2 張澤星;宗長富;馬福良;王暢;;基于多維高斯隱馬爾科夫模型的駕駛員轉(zhuǎn)向行為辨識方法[J];汽車技術;2011年07期
3 成波;馮睿嘉;張偉;李家文;張希波;;基于多源信息融合的駕駛?cè)似跔顟B(tài)監(jiān)測及預警方法研究[J];公路交通科技;2009年S1期
4 郭孜政;陳崇雙;王欣;;基于貝葉斯判別的駕駛行為危險狀態(tài)辨識[J];西南交通大學學報;2009年05期
5 宗長富;楊肖;王暢;張廣才;;汽車轉(zhuǎn)向時駕駛員駕駛意圖辨識與行為預測[J];吉林大學學報(工學版);2009年S1期
6 汪子梅;楊翠容;武薇;范影樂;;采用分塊耦合廣義分形維的語音端點檢測技術研究[J];生物醫(yī)學工程學雜志;2008年03期
7 馮國友;戴揚;沈海斌;時曉東;;孤立詞語音識別中端點檢測加速器的設計與實現(xiàn)[J];電子器件;2007年03期
8 王曉原;楊新月;;駕駛行為非參數(shù)微觀仿真模型[J];交通運輸工程學報;2007年01期
9 韋華,張偉;中美兩國汽車駕駛安全影響因素研究[J];中國安全科學學報;2004年09期
相關博士學位論文 前3條
1 周俊靜;基于激光雷達的智能車輛目標識別與跟蹤關鍵技術研究[D];北京工業(yè)大學;2014年
2 張一;智能視頻監(jiān)控中的目標識別與異常行為建模與分析[D];上海交通大學;2010年
3 張磊;基于駕駛員特性自學習方法的車輛縱向駕駛輔助系統(tǒng)[D];清華大學;2009年
相關碩士學位論文 前9條
1 任亮;智能車環(huán)境下車輛典型行為識別方法研究[D];長安大學;2015年
2 宋雅清;基于Android傳感器的駕駛事件識別關鍵技術研究[D];中國海洋大學;2014年
3 任靜文;基于智能手機終端的駕駛行為風格檢測[D];電子科技大學;2014年
4 石磊;基于Android智能移動終端的汽車疲勞駕駛預警系統(tǒng)的研究與實現(xiàn)[D];南京郵電大學;2013年
5 陳文;基于加速度傳感器的智能終端手勢識別關鍵技術研究[D];國防科學技術大學;2011年
6 黃沁元;基于iPhone設備點對點通信增值服務軟件的實現(xiàn)[D];電子科技大學;2011年
7 李實振;北京市司機風險駕駛行為研究[D];北京交通大學;2011年
8 龔全福;基于iOS的新浪微博iPhone客戶端的設計與實現(xiàn)[D];電子科技大學;2011年
9 龔劍;汽車不良駕駛行為監(jiān)測系統(tǒng)的設計與實現(xiàn)[D];武漢理工大學;2010年
,本文編號:2368005
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2368005.html