簡(jiǎn)支體系轉(zhuǎn)預(yù)應(yīng)力連續(xù)體系加固舊橋研究
發(fā)布時(shí)間:2018-07-10 12:16
本文選題:簡(jiǎn)支轉(zhuǎn)連續(xù) + 舊橋加固; 參考:《大連理工大學(xué)》2015年碩士論文
【摘要】:鋼筋混凝土橋梁結(jié)構(gòu)隨著時(shí)間發(fā)展會(huì)出現(xiàn)老化和損傷,而且加之橋梁結(jié)構(gòu)的使用頻率、承受荷載都隨著經(jīng)濟(jì)和社會(huì)的發(fā)展而增加,從而引起橋梁的耐久性降低和承載力不足,這些原因使得我國(guó)已經(jīng)出現(xiàn)了大量的舊橋或危橋。這些已經(jīng)存在的舊橋或危橋,如若不妥善處理,將會(huì)阻礙經(jīng)濟(jì)發(fā)展和甚至威脅人類(lèi)的生命財(cái)產(chǎn)安全。但如果將這些橋梁拆除重建將耗費(fèi)大量的財(cái)力人力,造成很大的浪費(fèi)并增加社會(huì)負(fù)擔(dān)。于是,橋梁加固越來(lái)越成為工程技術(shù)人員重視的課題。簡(jiǎn)支轉(zhuǎn)連續(xù)加固舊橋是常用的橋梁上部結(jié)構(gòu)加固方法之一。根據(jù)連續(xù)方式的不同,簡(jiǎn)支轉(zhuǎn)連續(xù)加固舊橋又可以分為多種形式,其中簡(jiǎn)支轉(zhuǎn)預(yù)應(yīng)力連續(xù)加固效果最優(yōu)。本文以京哈線某大橋簡(jiǎn)支轉(zhuǎn)預(yù)應(yīng)力連續(xù)加固為例,開(kāi)展這一體系轉(zhuǎn)換加固方法的研究,主要包括兩個(gè)部分,一是借助橋梁結(jié)構(gòu)分析軟件Dr.Bridge進(jìn)行模擬計(jì)算分析,二是根據(jù)荷載試驗(yàn)結(jié)果進(jìn)行數(shù)據(jù)處理分析。具體內(nèi)容介紹如下:1利用專(zhuān)業(yè)有限元軟件Dr.Bridge對(duì)結(jié)構(gòu)加固前后分別進(jìn)行承載能力驗(yàn)算,驗(yàn)算過(guò)程中參考《公路橋涵設(shè)計(jì)通用規(guī)范》(JTG D60—2004)和《公路鋼筋混凝土及預(yù)應(yīng)力混凝土橋涵設(shè)計(jì)規(guī)范》(JTG D62—2004)。在模型運(yùn)算結(jié)果中一方面驗(yàn)算其是否滿足規(guī)范要求,另一方面分別提取關(guān)鍵截面的恒載和活載效應(yīng)加以對(duì)比分析。結(jié)果表明結(jié)構(gòu)加固前不能夠滿足規(guī)范要求,不能保證結(jié)構(gòu)有足夠的可靠度。但在體系轉(zhuǎn)換加固后能夠完全滿足規(guī)范要求,且結(jié)構(gòu)安全儲(chǔ)備充分。此外,本文還從運(yùn)算結(jié)果中提取結(jié)構(gòu)加固前后關(guān)鍵截面的彎矩和剪力設(shè)計(jì)值進(jìn)行對(duì)比分析,結(jié)果發(fā)現(xiàn)結(jié)構(gòu)加固后彎矩設(shè)計(jì)值減小,剪力設(shè)計(jì)值增加,這是墩頂采用預(yù)應(yīng)力連續(xù)后結(jié)構(gòu)內(nèi)力重分配的結(jié)果。2該橋加固前后各自做了詳細(xì)的荷載試驗(yàn)。本文對(duì)兩次荷載試驗(yàn)的數(shù)據(jù)進(jìn)行處理和分析,數(shù)據(jù)內(nèi)容主要包括結(jié)構(gòu)恒載撓度、試驗(yàn)荷載撓度和試驗(yàn)荷載下的應(yīng)力應(yīng)變。試驗(yàn)結(jié)果表明,結(jié)構(gòu)加固后,其剛度和穩(wěn)定性都明顯增加,試驗(yàn)荷載的撓度效應(yīng)和應(yīng)力應(yīng)變效應(yīng)都顯著減小,再一次證明了該種加固方式的優(yōu)越性。
[Abstract]:Reinforced concrete bridge structure will appear aging and damage with the development of time. Moreover, the use frequency of bridge structure and bearing load will increase with the development of economy and society, which will lead to the reduction of durability and insufficient bearing capacity of bridge. These reasons have led to the emergence of a large number of old or dangerous bridges. These existing old or dangerous bridges, if not properly handled, will hinder economic development and even threaten the safety of human life and property. But if these bridges are demolished and rebuilt, they will cost a lot of money and manpower, cause great waste and increase the burden of society. As a result, bridge reinforcement has become a more and more important subject for engineers and technicians. It is one of the commonly used methods to strengthen the superstructure of the old bridge. According to the difference of continuous mode, simply supported transfer continuous reinforcement of old bridge can be divided into a variety of forms, among which simply supported transfer prestressed continuous reinforcement effect is the best. In this paper, the study of the system transfer reinforcement method is carried out with the example of continuous prestressed reinforcement of a bridge on the Beijing-Harbin Route, which includes two parts: one is to carry out the simulation calculation and analysis with the help of the bridge structure analysis software Dr.Bridge. Second, the data processing and analysis are carried out according to the load test results. The specific contents are as follows: 1. The special finite element software Dr.Bridge is used to check the bearing capacity of the structure before and after reinforcement. In the course of checking calculation, we refer to the General Design Code for Highway Bridges and culverts (JTG D60-2004) and the Design Code for Highway reinforced concrete and Prestressed concrete Bridges and culverts (JTG D62-2004). In the model operation results, on the one hand, it checks whether it meets the requirements of the specification, on the other hand, it extracts the dead load and live load effect of the key section to compare and analyze respectively. The results show that the structure can not meet the requirements of the code before reinforcement, and can not guarantee the reliability of the structure. But after system conversion and reinforcement, it can completely meet the requirements of the code, and the structural safety reserve is sufficient. In addition, the moment and shear design value of the key section before and after reinforcement are extracted from the calculation results for comparative analysis. The results show that the design value of bending moment decreases and the design value of shear force increases after reinforcement. This is the result of the redistribution of the internal force of the bridge after the prestressed continuous structure is adopted at the top of the pier .2 the bridge is subjected to detailed load tests before and after reinforcement. In this paper, the data of two load tests are processed and analyzed. The data mainly include the deflection of dead load, the deflection of test load and the stress and strain under test load. The experimental results show that the stiffness and stability of the structure are obviously increased, and the deflection effect and stress-strain effect of the test load are significantly reduced after reinforcement, which proves the superiority of this reinforcement method again.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U445.72
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前1條
1 王伯昕;簡(jiǎn)支轉(zhuǎn)連續(xù)體系自應(yīng)力法加固舊橋研究[D];大連理工大學(xué);2008年
,本文編號(hào):2113371
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2113371.html
最近更新
教材專(zhuān)著