高速公路交通量與分布規(guī)律預測
發(fā)布時間:2018-06-03 19:25
本文選題:交通量預測 + 交通分布規(guī)律預測; 參考:《河北工業(yè)大學》2015年碩士論文
【摘要】:交通量預測在公路建設項目研究工作具有非常重要的作用。鑒于當下我國高速公路的一大方向轉入改造和拓寬,并成為日后比較主要的發(fā)展趨勢之一。本文基于高速公路現(xiàn)有事實特征,分“宏觀”和“微觀”兩個角度對高速公路交通量,主要是重載交通量進行了預測,為高速公路拓寬改造交通量預測工作尋找思路。根據(jù)高速公路交通特征和既有高速公路的影響,論文首先使用較為傳統(tǒng)的四階段預測分析理論對其進行了交通量的“宏觀”方面的預測。由于車輛分布隨機性較大,采用一般的理論模型難以達到精度要求,對于高速公路還未有過對車輛分車道車輛行車規(guī)律的預測,而對于重載車輛對于高速公路的影響遠大于一般客車所產(chǎn)生的。所以本文從“微觀”方面著手,分車道對重載車輛分布規(guī)律進行了預測。為此,首先提出采用灰色系統(tǒng)理論中的GM(1,1)模型對連續(xù)兩周累計調查量分布系數(shù)進行計算,接著采取引用BP神經(jīng)網(wǎng)絡,運用MATLAB平臺,經(jīng)過多次修正,實現(xiàn)對灰色預測結果的殘差進行修正,最后將兩種方法結合的到最終結果,即為高速公路“六車道”的車道分布規(guī)律。通過對高速公路進行現(xiàn)場實際調查,得到交通總量分布,預測得出重載車輛分車道行駛規(guī)律,達到擴大通行能力的擴容目的同時能節(jié)約經(jīng)濟成本和工程量,有效幫助決策者宏觀調控出行,為人們出行提供參考依據(jù)。同時可為今后高速公路改擴建工程和新建工程提供理論依據(jù),分車道方法的改進有效的提高了預測精度,把相對誤差有效減小。為日后相關交通預測以至更廣范圍的研究提供參考。
[Abstract]:Traffic volume prediction plays an important role in the research of highway construction projects. In view of the transformation and widening of expressway in China, it becomes one of the main developing trends in the future. Based on the existing characteristics of the expressway, this paper forecasts the expressway traffic volume, mainly heavy-haul traffic volume, from the two angles of "macro" and "micro", in order to find a way to forecast the traffic volume of expressway widening and reforming. According to the characteristics of expressway traffic and the influence of existing expressway, this paper first uses the traditional four-stage prediction theory to forecast the traffic volume in "macroscopic" aspect. Because of the randomness of the vehicle distribution, it is difficult to achieve the precision requirement by using the general theoretical model. The impact of heavy-haul vehicles on the highway is far greater than that of the general bus. Therefore, this paper predicts the distribution law of heavy-haul vehicles from the micro-view point of view. For this reason, this paper first puts forward to calculate the distribution coefficient of accumulative survey quantity for two consecutive weeks by using the GM1 / 1) model of grey system theory, and then uses BP neural network and MATLAB platform to calculate the distribution coefficient of the cumulative investigation quantity for two consecutive weeks, then it is revised many times by using the MATLAB platform. The residual error of the grey prediction result is corrected, and finally the two methods are combined to the final result, that is, the lane distribution law of the "six lanes" of the expressway. Through the on-the-spot investigation on the freeway, the distribution of the total traffic volume is obtained, and the driving rule of the heavy-haul vehicle is predicted. The expansion of the capacity of the heavy-haul vehicle can also save the economic cost and the engineering quantity. It can effectively help the decision makers to control travel macroscopically and provide reference basis for people to travel. At the same time, it can provide the theoretical basis for the future highway reconstruction and extension projects and new construction projects. The improvement of the driveway method can effectively improve the prediction accuracy and reduce the relative error effectively. To provide a reference for future related traffic forecasts and more extensive research.
【學位授予單位】:河北工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U491
【參考文獻】
相關期刊論文 前3條
1 高為;陸百川;黃美靈;;基于小波去噪和最優(yōu)權重信息融合的短時交通量預測[J];重慶交通大學學報(自然科學版);2010年01期
2 崔功杰;王國宏;劉振獻;;基于L-M算法改進BP網(wǎng)絡的信息對抗能力評估[J];火力與指揮控制;2012年05期
3 方志鵬;陳小平;;BP神經(jīng)網(wǎng)絡在小信號有效值非線性誤差校正中的應用[J];蘇州大學學報(工科版);2008年01期
,本文編號:1973906
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1973906.html