京張城際鐵路八達嶺地下車站大斷面隧道開挖與支護技術研究
本文選題:大斷面隧道 + 拓撲優(yōu)化。 參考:《北京交通大學》2017年碩士論文
【摘要】:自中國第一條高速鐵路(京津城際鐵路)建成以來,高速鐵路在中國迅速發(fā)展,列車在穿越隧道時,考慮到空氣動力學問題,隧道的斷面通常較大,在圍巖條件一般時,大斷面隧道的開挖會對周圍巖體造成很大擾動,如何保證大斷面隧道圍巖的穩(wěn)定性和襯砌結(jié)構(gòu)的安全性是目前需要克服的重要工程難題。本文以國內(nèi)第一座修建于山嶺中的深埋地下火車站(京張城際鐵路八達嶺地下車站)為依托,綜合使用多種研究手段,對車站大跨段開挖中的關鍵技術問題進行研究。從圍巖變形、圍巖應力與塑性區(qū)、襯砌應力等角度對施工方案進行研究,評選最優(yōu)方案。利用ABAQUS的拓撲優(yōu)化功能,以應變能作為目標函數(shù),計算大跨段型鋼的最優(yōu)結(jié)構(gòu)。通過對不同長度、預應力、剛度的錨桿錨索對于圍巖變形影響的研究,得到初支中錨桿錨索支護參數(shù)的確定原則。取得以下主要成果:(1)在設計單位提出預留核心土法和預留中巖柱法的基礎上,作者個人提出三臺階七步法的方案,并對三種開挖方案進行研究,選取最優(yōu)方案。研究發(fā)現(xiàn),三臺階七步法在控制圍巖穩(wěn)定和保證結(jié)構(gòu)安全兩方面都有不足,此方案可以排除。預留核心土法雖然最終拱頂沉降要大于預留中巖柱法,但是此方案的拱頂沉降在開挖各階段緩慢發(fā)展,預留中巖柱法在破除上部巖柱時,拱頂沉降迅速增大,因此在控制圍巖穩(wěn)定性方面,預留核心土法要優(yōu)于預留中巖柱法。在保證結(jié)構(gòu)安全方面,預留中巖柱法的優(yōu)勢明顯,初襯的最大拉應力明顯小于預留核心土法,可以確保初襯不會受拉破壞,只要能夠保證破除上部巖柱時支護及時,將會對圍巖產(chǎn)生最小擾動。綜合比較,預留中巖柱法最優(yōu)。(2)對大跨段錨索長度、剛度、預應力的不同對圍巖變形影響的研究可知,錨索的長度對于控制圍巖的變形起到了關鍵作用。有錨索情況下,錨桿的軸力明顯減小,而錨索自身長度的增加也使不同位置錨索的軸力分布更加均衡,從而在有效控制圍巖變形的前提下避免自身受拉破壞。錨索的預應力和剛度的增加雖然可更好地控制圍巖變形,但是效果并不顯著,在設計時對這兩個支護參數(shù)的選取主要考慮滿足錨索抗拉強度的要求。(3)利用ABAQUS拓撲優(yōu)化功能,對四分之一圓環(huán)型鋼進行優(yōu)化,計算所得優(yōu)化結(jié)果符合“兩頭大中間小”的規(guī)律,在此基礎上對八達嶺地下車站大跨段的型鋼結(jié)構(gòu)進行優(yōu)化,對優(yōu)化后的結(jié)構(gòu)進行分析,得到了“強化拱腳拱腰”的型鋼截面尺寸方案,以保證拱腳拱腰初支的剛度。
[Abstract]:Since the establishment of the first high-speed railway in China (Beijing-Tianjin Intercity Railway), the high-speed railway has developed rapidly in China. When the train passes through the tunnel, considering the aerodynamic problems, the section of the tunnel is usually large, and when the surrounding rock conditions are normal, The excavation of large section tunnel will cause great disturbance to surrounding rock mass. How to ensure the stability of surrounding rock and the safety of lining structure of large section tunnel is an important engineering problem to be overcome at present. Based on the first underground railway station (Badaling Underground Station of Beijing-Zhangzhou-Intercity Railway) built in the mountains in China, this paper studies the key technical problems in the excavation of the long span section of the station by using a variety of research methods. The construction scheme is studied from the angles of surrounding rock deformation, surrounding rock stress and plastic zone, lining stress and so on. The optimal structure of long span section steel is calculated by using the topological optimization function of ABAQUS and the strain energy as the objective function. By studying the influence of anchoring cables of different lengths, prestress and stiffness on the deformation of surrounding rock, the principle of determining the supporting parameters of anchor cables in initial support is obtained. The main achievements are as follows: 1) on the basis of reserving core soil method and reserving middle rock column method, the author puts forward a three-step seven-step method, and studies three kinds of excavation schemes, and selects the optimal scheme. It is found that the three-step and seven-step method has shortcomings in controlling the stability of surrounding rock and ensuring the safety of the structure, and this scheme can be eliminated. Although the final dome settlement of the reserved core soil method is greater than that of the reserved middle rock column method, the dome settlement of this scheme develops slowly in each stage of excavation. When the upper rock column is broken by the reserved middle rock column method, the dome settlement increases rapidly. Therefore, in the aspect of controlling the stability of surrounding rock, the reserved core soil method is better than the reserved medium rock column method. In the aspect of ensuring structural safety, the method of reserving middle rock column has obvious advantages, and the maximum tensile stress of initial lining is obviously smaller than that of reserved core soil method, which can ensure that the initial lining will not be damaged by tension, so long as it can ensure that the support is timely when the upper rock column is broken. There will be a minimal disturbance to the surrounding rock. By comprehensive comparison, the study on the influence of the length, stiffness and prestress of anchor cable on the deformation of surrounding rock shows that the length of anchor cable plays a key role in controlling the deformation of surrounding rock. In the case of anchor cable, the axial force of the anchor rod decreases obviously, and the increase of the length of the anchor cable makes the axial force distribution of the anchor cable in different positions more balanced, thus avoiding the tensile damage under the premise of effectively controlling the deformation of surrounding rock. Although the increase of prestress and stiffness of anchor cable can better control the deformation of surrounding rock, the effect is not obvious. The selection of these two supporting parameters mainly considers to meet the requirements of tensile strength of anchor cable in design. On the basis of the optimization of 1/4 ring section steel, the optimized results accord with the law of "two ends, middle and small". On this basis, the section steel structure of the large span section of Badaling underground station is optimized, and the optimized structure is analyzed. The section size scheme of "strengthening arch waist" is obtained to ensure the stiffness of arch waist initial support.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U455.4
【參考文獻】
相關期刊論文 前10條
1 陳東方;馮夏庭;徐鼎平;江權;劉國鋒;簡崇林;;砂漿錨桿加固效果的等效數(shù)值模擬方法研究[J];巖土力學;2015年04期
2 劉杰;唐亮;李建林;胡靜;范留軍;夏駿;;基于隧洞襯砌和等效錨桿模擬的密集地下洞室群穩(wěn)定性分析[J];巖土力學;2014年S1期
3 趙勇;李術才;趙巖;李利平;;超大斷面隧道開挖圍巖荷載釋放過程的模型試驗研究[J];巖石力學與工程學報;2012年S2期
4 王金華;;全煤巷道錨桿錨索聯(lián)合支護機理與效果分析[J];煤炭學報;2012年01期
5 趙鵬社;;關于大斷面隧道施工CRD工法的優(yōu)化[J];鐵道建筑;2010年08期
6 李少剛;劉保國;;深埋正交隧道零間距施工技術研究[J];北京交通大學學報;2010年04期
7 鄭俊杰;劉秀敏;歐陽院平;章榮軍;;大斷面隧道錨桿設置的優(yōu)化分析[J];地下空間與工程學報;2009年02期
8 陳衛(wèi)忠;于洪丹;郭小紅;盧海峰;賈善坡;伍國軍;;廈門海底隧道海域風化槽段圍巖穩(wěn)定性研究[J];巖石力學與工程學報;2008年05期
9 李術才;王漢鵬;鄭學芬;;分岔隧道穩(wěn)定性分析及施工優(yōu)化研究[J];巖石力學與工程學報;2008年03期
10 張強勇;李術才;李勇;王漢鵬;;大型分岔隧道圍巖穩(wěn)定與支護三維地質(zhì)力學模型試驗研究[J];巖石力學與工程學報;2007年S2期
相關博士學位論文 前3條
1 康富中;深埋超大規(guī)模地下鐵路車站結(jié)構(gòu)方案及關鍵支護參數(shù)優(yōu)化研究[D];北京交通大學;2011年
2 房倩;高速鐵路隧道支護與圍巖作用關系研究[D];北京交通大學;2010年
3 劉春;深埋大斷面隧道施工力學性態(tài)研究[D];重慶大學;2007年
相關碩士學位論文 前9條
1 李寧;大斷面隧道超前預加固及開挖支護過程數(shù)值模擬研究[D];北京交通大學;2014年
2 李明;超大規(guī)模地下鐵路車站圍巖強度研究[D];北京交通大學;2012年
3 高德蓮;超大規(guī)模地下鐵路車站與隧道過渡段復雜結(jié)構(gòu)數(shù)值建模及施工方案優(yōu)化[D];北京交通大學;2012年
4 萬欣蕊;京張城際鐵路八達嶺地下車站三連拱結(jié)構(gòu)方案優(yōu)化研究[D];北京交通大學;2012年
5 何周偉;京張城際鐵路八達嶺地下車站單拱大跨超大斷面結(jié)構(gòu)方案優(yōu)化研究[D];北京交通大學;2013年
6 張琦;京張城際鐵路八達嶺地下車站水壓致裂地應力測量及施工方案優(yōu)化[D];北京交通大學;2010年
7 孔飚;京張城際鐵路八達嶺地下車站結(jié)構(gòu)優(yōu)化研究[D];北京交通大學;2010年
8 楊佳璇;京張城際鐵路八達嶺地下車站主體結(jié)構(gòu)支護參數(shù)優(yōu)化研究[D];北京交通大學;2010年
9 段亞剛;地下大型儲備庫洞室斷面形狀優(yōu)化及合理間距研究[D];北京交通大學;2007年
,本文編號:1945484
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1945484.html