天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

基于有限元模型修正的全抗扭支承曲線梁橋爬移問題研究

發(fā)布時間:2018-05-25 08:15

  本文選題:有限元模型修正 + 全抗扭支承; 參考:《長安大學》2017年碩士論文


【摘要】:曲線梁橋因曲率半徑的影響,處于彎扭耦合、內(nèi)外側支反力不均勻等復雜受力狀態(tài)。加之相關設計規(guī)范的缺失,設計者對彎、直橋差異認識的不足以及經(jīng)驗設計的主觀性,致使早期設計的曲線梁橋甚至新建結構不同程度出現(xiàn)主梁的爬移現(xiàn)象,且往往誘發(fā)橋梁墩身開裂、支座脫空、主梁傾覆等諸多病害,輕則影響美觀、降低行車舒適性;重則出現(xiàn)塌橋等嚴重安全事故。本文依托潘家灣樞紐立交EK0+138.873匝道橋,考慮主梁爬移的動態(tài)累積過程,在全抗扭支承曲線梁橋的爬移分析中引入有限元動態(tài)修正的思想,從爬移對結構的影響分析出發(fā),提出主梁、支座徑向位移及剪切變形的合理控制標準,并在支承布置因素影響分析的基礎上提出爬移的有效預防和緩減措施。本文主要包括以下研究內(nèi)容及結論:(1)基于橋梁動靜載試驗,充分考慮靜動態(tài)響應的“聯(lián)合”作用,提出了基于動態(tài)系數(shù)的聯(lián)合靜動力有限元修正方法,并對依托工程初始梁格模型進行實例應用。修正結果表明,聯(lián)合靜動力的有限元修正技術可使各目標響應計算值與實測值的誤差減少一半之多,且相較常規(guī)的聯(lián)合靜動力修正方法,本文方法的修正精度更高,是對聯(lián)合靜動力修正方法的完善,具有顯著優(yōu)勢及推廣應用價值。(2)基于修正后的有限元模型,分析主梁整體爬移及其連帶的支座偏移、剪切變形現(xiàn)象對結構的影響。結果表明,主梁徑向偏移表現(xiàn)為與縱向偏移對各響應值一致的影響規(guī)律,但影響程度則約為其幾倍或幾十倍,宜以徑向效應控制設計。以剪切變形為代表的爬移連帶病害使結構響應成倍甚至幾十倍上百倍的增加,對邊墩及其上支座的受力最為不利。以邊墩處支座豎向不出現(xiàn)負反力及徑向反力不超過支座摩阻力為控制目標,確定出主梁徑向位移、支座偏位、剪切變形的單指標限值,并提出合理的控制建議。綜合以上分析,進一步細化和完善爬移的產(chǎn)生及發(fā)展過程,給出詳細的闡述。(3)利用修正后的有限元模型計算離心力和溫度荷載對結構徑向位移的貢獻率,判定離心力和溫度荷載為曲線梁橋爬移的主要外在因素;诹Ψê吞摴υ,推演出離心力及均勻變溫作用下考慮剪力影響的任意截面徑向位移解析公式,并用一算例驗證了所推公式的正確性和有效性。進一步分析徑向位移解析公式的特點,確定出爬移的關鍵影響因素為曲率半徑、圓心角、截面特性及支承布置,爬移病害的預防應重點關注此四類因素的合理取值問題。(4)通過對支承布置因素變參分析,獲得了支座間距、中間支座預偏心、支撐形式、支座形式對結構的影響規(guī)律,確定出每種因素下依托工程相對最優(yōu)的設置方案,提出增大支座間距,墩梁固結或雙墩布設,板式支座更換為盆式支座,墩梁間設置限位裝置等有效的緩減措施,并給出每種措施詳細的布設要求和建議。
[Abstract]:Because of the influence of curvature radius, the curved girder bridge is in the complicated state of bending and torsional coupling, the reaction force of the inner and outer side support is not uniform, and so on. In addition, the lack of relevant design specifications, the lack of understanding of the difference between curved and straight bridges, and the subjectivity of empirical design result in the creeping of the main beam in the early design of curved girder bridges and even in the newly built structures to varying degrees. And it often induces many diseases such as bridge pier cracking, pedestal detachment, main beam overturning and so on, which will affect the beauty of the bridge and reduce the driving comfort, while serious safety accidents such as collapse of the bridge will occur in the heavy part of the bridge. Based on the EK0 138.873 ramp bridge of Panjiawan junction, considering the dynamic accumulation process of the main beam climbing, this paper introduces the idea of finite element dynamic correction in the climbing analysis of the fully torsional supported curved girder bridge, and starts with the analysis of the influence of the climbing movement on the structure. The reasonable control standards of radial displacement and shear deformation of main beam and bearing are put forward. Based on the analysis of the influence of supporting arrangement factors, the effective prevention and mitigation measures of creep movement are put forward. This paper mainly includes the following research contents and conclusions: (1) based on the bridge static and dynamic load test, the "joint" effect of static and dynamic response is fully considered, and a joint static and dynamic finite element correction method based on dynamic coefficient is proposed. And the application of the initial beam lattice model of supporting engineering is carried out. The correction results show that the finite element method of combined static and dynamic forces can reduce the error between the calculated and measured values of each target response by half, and the accuracy of the proposed method is higher than that of the conventional combined static and dynamic correction method. On the basis of the modified finite element model, the influence of the whole climbing movement of the main beam and its associated bearing offset and shear deformation on the structure is analyzed. The results show that the radial migration of the main beam is consistent with the effect of longitudinal migration on each response value, but the influence degree is about several times or tens times of it, so the radial effect should be used to control the design. The climbing and associated diseases represented by shear deformation increase the response of the structure by many times or even tens of times, which is the most disadvantageous to the side pier and its upper support. Taking the vertical negative reaction force and the radial reaction force not exceeding the support friction at the side pier as the control objectives, the single index limit values of the radial displacement, the support offset and the shear deformation of the main beam are determined, and the reasonable control suggestions are put forward. By synthesizing the above analysis, the generation and development process of climbing movement are further refined and perfected, and the detailed explanation is given. The contribution rate of centrifugal force and temperature load to radial displacement of structure is calculated by using the modified finite element model. The centrifugal force and temperature load are the main external factors for the climb of curved girder bridge. Based on the force method and the principle of virtual work, the analytical formula of radial displacement of arbitrary cross section considering the influence of shear force under centrifugal force and uniform variable temperature is derived. An example is given to verify the correctness and validity of the formula. Further analyzing the characteristics of the analytical formula of radial displacement, it is determined that the key influencing factors are radius of curvature, angle of center of circle, characteristic of section and arrangement of support. The prevention of climbing and moving diseases should pay attention to the reasonable value of these four kinds of factors. (4) by analyzing the factors of supporting arrangement and changing parameters, the influence laws of support spacing, intermediate bearing pre-eccentricity, support form and bearing form on structure are obtained. The relative optimal setting scheme of supporting project under each kind of factors is determined, and effective mitigation measures such as increasing support spacing, consolidation of pier beam or arrangement of double piers, replacement of plate support with basin support, setting of limit device between piers and beams, etc., are put forward. Detailed layout requirements and suggestions for each measure are also given.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U441

【參考文獻】

相關期刊論文 前10條

1 駱勇鵬;黃方林;廖明皓;魯四平;;基于逐步回歸分析的既有鐵路鋼桁橋有限元模型修正[J];鐵道科學與工程學報;2015年05期

2 萬華平;任偉新;王寧波;;高斯過程模型的全局靈敏度分析的參數(shù)選擇及采樣方法[J];振動工程學報;2015年05期

3 焦馳宇;劉陸宇;龍佩恒;侯蘇偉;;城市曲線梁橋爬移現(xiàn)象及解決措施研究[J];工程力學;2015年S1期

4 宋力勛;;曲線梁橋的橫向效應研究與徑向約束體系的比選[J];中外公路;2015年01期

5 魏錦輝;任偉新;;基于響應面方法的橋梁靜動力有限元模型修正[J];公路交通科技;2015年02期

6 張博蘭;;支座預偏心設置對曲線梁橋受力影響分析[J];福建建筑;2015年01期

7 梁鵬;李斌;王秀蘭;王曉光;吳向男;馬旭明;;基于橋梁健康監(jiān)測的有限元模型修正研究現(xiàn)狀與發(fā)展趨勢[J];長安大學學報(自然科學版);2014年04期

8 張征文;李永慶;;基于荷載試驗數(shù)據(jù)修正橋梁結構有限元計算模型的研究[J];西安建筑科技大學學報(自然科學版);2014年02期

9 朱寅虎;毛毳;;移動荷載作用下曲線橋側移的有限元分析[J];天津城建大學學報;2014年01期

10 李學治;;城市立交橋中單支墩曲線匝道橋的整體失穩(wěn)及其橫向爬移問題分析與對策[J];企業(yè)導報;2014年02期

相關會議論文 前2條

1 榮志娟;王學明;嚴立新;呂寶華;張陵;;基于統(tǒng)計分析的鋼管塔環(huán)板節(jié)點有限元模型修正[A];第21屆全國結構工程學術會議論文集第Ⅱ冊[C];2012年

2 劉小川;張凌霞;牟讓科;;基于靈敏度分析和響應面方法的有限元模型修正[A];中國航空結構動力學專業(yè)組第十六屆學術交流會論文集[C];2008年

相關博士學位論文 前3條

1 唐盛華;混凝土橋梁結構損傷識別試驗研究[D];湖南大學;2013年

2 方圣恩;基于有限元模型修正的結構損傷識別方法研究[D];中南大學;2010年

3 袁愛民;基于靈敏度分析的有限元模型修正技術若干關鍵問題研究[D];東南大學;2006年

相關碩士學位論文 前10條

1 阮紫彥;基于長期健康監(jiān)測數(shù)據(jù)的某S形線梁橋徑向偏位研究[D];華南理工大學;2016年

2 趙崇基;基于模型修正的混凝土連續(xù)梁橋運營安全性能評估的試驗研究[D];太原理工大學;2016年

3 奚南;基于橫豎向車橋耦合作用下彎梁橋的橫向力研究[D];長安大學;2016年

4 龐振宇;城市預應力混凝土曲線梁橋溫度場及溫度效應研究[D];南京工業(yè)大學;2015年

5 李琦;孤山川11號橋糾偏技術[D];長安大學;2015年

6 趙成功;橋梁糾偏技術及其應用[D];長安大學;2015年

7 張?zhí)煊?混凝土連續(xù)彎梁橋橫向爬移模型研究[D];長安大學;2015年

8 林麗娟;曲線梁橋的橫向“爬移”分析[D];鄭州大學;2015年

9 平然;曲線梁橋爬移問題的研究[D];北京建筑大學;2014年

10 段曉偉;混凝土曲線連續(xù)箱梁橋多因素作用橫向位移分析[D];長安大學;2014年

,

本文編號:1932737

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1932737.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶6a332***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com