讓壓錨桿在深埋軟巖隧洞中的作用機理及支護效應研究
本文選題:讓壓錨桿 + 深埋軟巖隧洞; 參考:《山東科技大學》2017年碩士論文
【摘要】:煤礦巷道、引水隧洞等大埋深的地下洞室經(jīng)常穿過軟弱巖體,錨桿支護作為巖土、礦山領域最為常用的技術手段,能夠有效地提高軟巖穩(wěn)定性。傳統(tǒng)錨桿變形量小,不能適應隧洞軟弱圍巖的大變形,讓壓錨桿的出現(xiàn)有效地解決了這一問題。本文基于前人研發(fā)的新型讓壓錨桿,運用FLAC3D模擬了讓壓錨桿與普通錨桿的拉拔試驗,錨桿受到拉拔作用時,錨桿端頭位置軸力最大,沿著桿體向里端逐漸減小,讓壓錨桿減小的幅度比普通錨桿大;隨著拉拔力的增加,錨桿的軸力相應增大,讓壓錨桿增大的速度比普通錨桿小。對比前人進行的室內與現(xiàn)場拉拔試驗,證明了采用FLAC3D模擬讓壓錨桿拉拔試驗與實際相符,并且驗證了模擬錨桿桿體抗剪性能的可行性。對比分析了普通錨桿和讓壓錨桿在軟巖隧洞中的支護效應,相比于普通錨桿,讓壓錨桿達到屈服強度的速度更慢,達到屈服強度后維持的時間更長。普通錨桿最大承力的中間位置容易被拉斷,軸力呈“沙漏狀”分布,讓壓錨桿在達到屈服強度后,能維持較長時間,軸力呈“紡錘狀”分布。并且得出6 m讓壓錨桿的彈性讓壓距離為70.54 mm,塑性讓壓距離為130.65 mm。以“引漢濟渭”工程秦嶺深埋軟巖隧洞為工程背景,以完成TBM掘進機卡停后的脫困工作為工程目標,基于室內巖石力學試驗對現(xiàn)場工程巖體的參數(shù)進行了估算,根據(jù)現(xiàn)場實測結果,通過反分析法確定了圍巖參數(shù);采用FLAC3D對秦嶺深埋隧洞脫困段的支護進行模擬,發(fā)現(xiàn)普通錨桿容易發(fā)生破斷失效,而由于讓壓組件的大延伸率,讓壓錨桿能夠適應圍巖的變形,不容易發(fā)生破斷,較長時間起到支護作用,從而達到控制圍巖變形的效果。針對秦嶺深埋隧洞TBM卡機段的脫困工作,在脫困段的支護采用讓壓錨桿,脫困之后的正常段支護采用普通錨桿,該方案的數(shù)值模擬結果與實測結果基本一致。后期工程實踐證明,這一方案的實施能夠有效輔助解決TBM卡機問題,順利完成脫困。
[Abstract]:Underground caverns with large buried depth, such as coal roadway and diversion tunnel, often pass through weak rock mass. As rock and soil, bolt support is the most commonly used technical means in mining field, which can effectively improve the stability of soft rock. Because of the small deformation of the traditional bolt, it can not adapt to the large deformation of the weak surrounding rock of the tunnel, so the emergence of the pressure-bolt can effectively solve this problem. In this paper, based on the new type of pressure-release anchor developed by predecessors, FLAC3D is used to simulate the pull-out test. When the anchor rod is pulled out, the axial force at the end of the bolt is the largest, and gradually decreases along the inside end of the bolt body. With the increase of drawing force, the axial force of the bolt increases and the speed of the increase of the compression bolt is smaller than that of the common anchor. Compared with the indoor and field drawing tests carried out by the predecessors, it is proved that the FLAC3D simulation is in accordance with the actual conditions, and the feasibility of simulating the shearing performance of the bolt body is verified. The supporting effect of common bolt and concession bolt in soft rock tunnel is analyzed. Compared with common bolt, the speed of reaching yield strength is slower and the time of maintaining after reaching yield strength is longer. The middle position of the maximum bearing force of common anchor is easily broken, and the axial force is "hourglass" distribution. The axial force can be maintained for a long time and the axial force is "spindle-shaped" distribution after reaching yield strength. The results show that the elastic pressure distance is 70.54 mm and the plastic pressure distance is 130.65 mm. Based on the engineering background of Qinling deep buried soft rock tunnel in the project of "diversion from Han to Jiwei", and taking the work of extricating the TBM roadheader after stopping as the engineering objective, the parameters of the field engineering rock mass are estimated based on the indoor rock mechanics test. According to the field measured results, the parameters of surrounding rock are determined by inverse analysis, and the support of deep buried tunnel in Qinling is simulated by FLAC3D. It is found that the common bolt is prone to break and failure, and because of the large elongation of the compressing module, So that the pressure bolt can adapt to the deformation of surrounding rock, it is not easy to break, and play a supporting role for a long time, thus the effect of controlling the deformation of surrounding rock can be achieved. In view of the relief work of the TBM clamping section of the deep buried tunnel in the Qinling Mountains, the abutment bolt is used in the support of the relief section, and the ordinary anchor rod is used in the normal section after the release. The numerical simulation results of the scheme are basically consistent with the measured results. Later engineering practice shows that the implementation of this scheme can effectively solve the problem of TBM card machine and successfully finish the problem of getting rid of difficulties.
【學位授予單位】:山東科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U455.71
【參考文獻】
相關期刊論文 前10條
1 汪波;王杰;吳德興;趙玉東;張彪;李錚;;讓壓支護體系在軟巖大變形公路隧道中的應用研究[J];鐵道科學與工程學報;2016年10期
2 張彪;張志強;汪波;周立;;讓壓錨桿在大變形隧道支護應用中試驗研究[J];巖土力學;2016年07期
3 項力;肖明;孟鵬;;基于ABAQUS的高強讓壓錨桿數(shù)值模擬及支護評價[J];水電能源科學;2016年05期
4 李兆霖;王連國;陸銀龍;;高強讓壓錨桿力學特性及結構優(yōu)化[J];煤礦安全;2015年11期
5 孫鈞;潘曉明;王勇;;隧道軟弱圍巖擠壓大變形非線性流變力學特征及其錨固機制研究[J];隧道建設;2015年10期
6 李為騰;楊寧;李廷春;王剛;梅玉春;玄超;;FLAC~(3D)中錨桿破斷失效的實現(xiàn)及應用[J];巖石力學與工程學報;2016年04期
7 汪波;王杰;吳德興;徐建強;趙玉東;;讓壓支護技術在軟巖大變形隧道中的應用探討[J];公路交通科技;2015年05期
8 郭永建;姜飛;周浩;項小珍;;新型讓壓錨桿作用機理研究[J];力學與實踐;2015年02期
9 單仁亮;楊昊;鐘華;陶宇;;讓壓錨桿能量本構模型及支護參數(shù)設計[J];中國礦業(yè)大學學報;2014年02期
10 吳擁政;康紅普;;強力錨桿桿體尾部破斷機理研究[J];煤炭學報;2013年09期
相關博士學位論文 前1條
1 張欣;全長粘結式錨桿受力特性以及數(shù)值仿真試驗研究[D];山東大學;2008年
相關碩士學位論文 前4條
1 高攀科;斑竹林隧道軟弱圍巖變形特征與控制措施研究[D];重慶交通大學;2009年
2 王閣;預應力讓壓錨桿的數(shù)值模擬研究及其應用[D];山東科技大學;2007年
3 朱艷麗;南水北調西線工程深埋隧洞軟巖變形的初步研究[D];河海大學;2006年
4 王建華;深埋隧道軟弱圍巖與初期支護相互作用研究[D];重慶大學;2005年
,本文編號:1921588
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1921588.html