天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 路橋論文 >

GFRP橋面板黏結(jié)界面力學(xué)分析與試驗(yàn)研究

發(fā)布時(shí)間:2018-05-15 22:29

  本文選題:GFRP橋面板 + 黏結(jié)界面破壞; 參考:《東南大學(xué)》2015年博士論文


【摘要】:GFRP橋面板以其輕質(zhì)、高強(qiáng)、耐腐蝕等優(yōu)點(diǎn),近年來(lái)已在橋梁工程中得到越來(lái)越廣泛地應(yīng)用。GFRP構(gòu)件黏結(jié)界面是GFRP橋面板的一個(gè)重要組成部分,它決定各構(gòu)件能否有效協(xié)同承載和承受溫度變化引起的變形。黏結(jié)界面性能的好壞對(duì)結(jié)構(gòu)性能產(chǎn)生重要的影響,在實(shí)際工程中經(jīng)常發(fā)生因?yàn)轲そY(jié)界面首先破壞而危及整個(gè)結(jié)構(gòu)的現(xiàn)象,結(jié)構(gòu)的整體承載能力往往不是橋面板本身的材料強(qiáng)度決定,而是取決于界面的黏結(jié)強(qiáng)度和斷裂韌性。本論文在國(guó)家自然科學(xué)基金(50878048、50978055)、國(guó)家973計(jì)劃項(xiàng)目(2012CB026200)子課題的支持下,圍繞GFRP橋面板構(gòu)件黏結(jié)界面失效、斷裂行為等亟待解決的關(guān)鍵問(wèn)題,對(duì)GFRP橋面板構(gòu)件間粘結(jié)界面破壞模式、破壞機(jī)理進(jìn)行分析,對(duì)粘結(jié)界面斷裂行為進(jìn)行研究;分析荷載和溫度作用下GFRP橋面板結(jié)構(gòu)的力學(xué)響應(yīng)特別是黏結(jié)界面的力學(xué)響應(yīng)。主要研究工作如下:(1)分析了GFRP橋面板黏結(jié)接頭的破壞模式、破壞機(jī)理。以單搭黏結(jié)接頭的膠層為研究對(duì)象,基于Hart-Smith公式計(jì)算了GFRP單搭接界面的彈性、彈塑性應(yīng)力分布,根據(jù)膠層最大剪應(yīng)變準(zhǔn)則得到了膠層剪切失效時(shí)接頭的極限承載力,并探討了搭接參數(shù)對(duì)彈性應(yīng)力和極限承載力的影響。隨后,開展了GFRP橋面板黏結(jié)界面力學(xué)性能的試驗(yàn)研究,得到了黏結(jié)界面實(shí)際的破壞模式,分析了其破壞機(jī)理,考慮了黏結(jié)參數(shù)對(duì)黏結(jié)強(qiáng)度的影響,建立了復(fù)雜應(yīng)力狀態(tài)下的FRP界面黏結(jié)強(qiáng)度準(zhǔn)則。研究成果可為GFRP橋面板黏結(jié)界面安全評(píng)估提供科學(xué)依據(jù)。(2)基于彈性地基梁理論,考慮了GFRP板的剪切變形、以及裂尖轉(zhuǎn)角和位移對(duì)梁變形的影響,對(duì)雙懸臂(DCB)膠結(jié)試件進(jìn)行了分析,得到了柔度與Ⅰ型能量釋放率的解析式?紤]膠層對(duì)變形的影響,利用Goodman彈性?shī)A層假設(shè)推導(dǎo)了4ENF和4MMB試件在四點(diǎn)彎作用下的撓度變形公式,得到了Ⅱ型和混合型能量釋放率解析表達(dá)式。開展了復(fù)合材料Ⅰ型、Ⅱ型和混合型試件膠結(jié)界面斷裂試驗(yàn)研究。將試驗(yàn)測(cè)得的臨界荷載結(jié)合理論公式求得其界面裂紋斷裂韌性,線性回歸得到裂紋尖端復(fù)合變形下的斷裂準(zhǔn)則。此外,對(duì)粘結(jié)界面裂紋擴(kuò)展進(jìn)行了有限元數(shù)值模擬,驗(yàn)證了提出的斷裂準(zhǔn)則的正確性。(3)通過(guò)GFRP橋面板的靜力試驗(yàn),發(fā)現(xiàn)了粘結(jié)界面破壞先于其他破壞模式首先發(fā)生。通過(guò)對(duì)黏結(jié)界面端的應(yīng)力場(chǎng)分析,得到了橋面板粘結(jié)界面端的奇異系數(shù),并提出了減小應(yīng)力奇異性的辦法。根據(jù)Chamis模型方法,建立了包含黏結(jié)膠層GFRP橋面板的細(xì)觀力學(xué)有限元模型,將有限元計(jì)算結(jié)果與GFRP橋面板靜載試驗(yàn)結(jié)果進(jìn)行了對(duì)比。研究發(fā)現(xiàn)在荷載作用下,構(gòu)件間膠結(jié)界面的剪應(yīng)力較大,應(yīng)用第二章提出的粘結(jié)界面強(qiáng)度準(zhǔn)則得到了界面失效系數(shù)最大值達(dá)0.66,而材料的蔡-吳系數(shù)為0.42,表明界面為橋面板結(jié)構(gòu)設(shè)計(jì)的薄弱環(huán)節(jié)。分析了管材截面參數(shù)和膠層參數(shù)對(duì)GFRP界面應(yīng)力的影響。對(duì)GFRP橋面板在荷載作用下的穩(wěn)定性進(jìn)行了驗(yàn)算,討論了頂?shù)装搴瘛⒏拱搴穸、?gòu)件高度、倒角半徑對(duì)橋面板屈曲性能的影響。(4)采用彈性等效理論將GFRP橋面板彈性等效為正交異性板。根據(jù)正交異性板殼理論,基于基爾霍夫假定,推導(dǎo)了溫度作用下GFRP橋面板的撓曲面控制微分方程,應(yīng)用納維解法計(jì)算出了板的撓度、轉(zhuǎn)角和內(nèi)力。分析了三種溫差模式對(duì)GFRP橋面板力學(xué)性能的影響,結(jié)果表明:溫差作用對(duì)GFRP橋面結(jié)構(gòu)強(qiáng)度的影響非常不利,整體降溫引起的橋面板內(nèi)應(yīng)力值和膠界面應(yīng)力值大于整體升溫、梯度溫度變化作用,需將整體降溫在GFRP橋面板設(shè)計(jì)中重點(diǎn)加以考慮。(5)對(duì)含黏結(jié)界面裂縫橋面板的受力性能進(jìn)行了數(shù)值分析。采用虛擬裂紋閉合法計(jì)算了不同工況下GFRP構(gòu)件間粘結(jié)界面裂紋尖端的能量釋放率,確立了不利工況下的能量釋放率,并采用第三章膠結(jié)裂紋斷裂準(zhǔn)則進(jìn)行了評(píng)價(jià);研究了能量釋放率隨裂縫深度的變化規(guī)律,根據(jù)Paris公式計(jì)算了膠結(jié)裂紋的疲勞壽命。分析了裂紋存在造成的橋面板內(nèi)應(yīng)力重分布,對(duì)橋面板屈曲臨界荷載、強(qiáng)度和剛度的不利影響。為提高GFRP橋面板的使用壽命,建議控制好橋面板粘結(jié)界面施工質(zhì)量,盡量避免膠結(jié)裂紋產(chǎn)生。
[Abstract]:The GFRP bridge deck has the advantages of light quality, high strength and corrosion resistance. In recent years, the bonding interface of.GFRP components has been widely used in bridge engineering. It is an important part of the GFRP bridge panel. It determines whether the components can effectively coordinate the load and bear the deformation caused by the temperature change. The performance of the bonding interface is good or bad to the structure. It can have important effects. In practical engineering, it often occurs because the bonding interface is first destroyed and endanger the whole structure. The overall bearing capacity of the structure is often not determined by the strength of the material of the bridge panel itself, but on the bonding strength and fracture toughness of the interface. This paper is in the National Natural Science Foundation (5087804850978055). Under the support of the sub project of the national 973 Plan Project (2012CB026200), the key problems that need to be solved, such as the failure of the bonding interface of the GFRP bridge panel and the fracture behavior, are analyzed. The fracture mechanism of the bonding interface between the members of the GFRP bridge panel is analyzed, the fracture behavior of the bonded boundary surface is studied, and the GFRP bridge under the action of load and temperature is analyzed. The mechanical response of the panel structure is especially the mechanical response of the bonding interface. The main research work is as follows: (1) the failure mode and failure mechanism of the adhesive joint of the GFRP bridge panel are analyzed. The elastic, elastic and plastic stress distribution of the single lap interface of GFRP is calculated based on the Hart-Smith formula, and the plastic stress distribution is calculated on the basis of the glue layer. The maximum shear strain criterion is used to obtain the ultimate bearing capacity of the joint during the shear failure of the rubber layer, and the effect of the lap parameters on the elastic stress and the ultimate bearing capacity is discussed. Then, the mechanical properties of the bonding interface of the GFRP bridge deck are studied. The actual failure mode of the bonding interface is obtained. The failure mechanism of the bonding interface is analyzed, and the bonding parameter is considered. The adhesive strength criterion of FRP interface under complex stress state is established. The research results can provide a scientific basis for the safety assessment of the bonding interface of the GFRP bridge panel. (2) based on the elastic foundation beam theory, the shear deformation of the GFRP plate, the effect of the angle and displacement of the crack tip on the deformation of the beam are considered, and the cementation of the double cantilever (DCB) is cemented. An analytical formula for the flexibility and energy release rate of type I was obtained. Considering the effect of the adhesive layer on the deformation, the deflection and deformation formula of 4ENF and 4MMB specimens under four point bending were derived by using the Goodman elastic sandwich hypothesis, and the analytical expressions of the energy release rate of type II and mixed type were obtained. The fracture toughness of the interface crack is obtained by the critical load combined with the theoretical formula, and the fracture criterion under the composite deformation at the crack tip is obtained by linear regression. Furthermore, the finite element numerical simulation of the crack propagation of the bonding interface is carried out, and the correctness of the proposed fracture criterion is verified. (3) through the static test of the GFRP bridge deck, it is found that the failure of the bond interface is first occurring first. Through the analysis of the stress field at the end of the boundary, the singular coefficient of the end of the visco boundary surface of the bridge deck is obtained, and the method of reducing the singularity of the stress is proposed. According to the Chamis model, the GFRP bridge containing the adhesive layer is established. The finite element finite element model of the panel is compared with the results of the static load test of the GFRP bridge deck. It is found that the shear stress of the cementation interface between the components is larger under the load. The maximum value of the interfacial inefficiency coefficient is 0.66, and the Chua Wu coefficient of the material is obtained by the second chapter. For 0.42, it is shown that the interface is the weak link of the bridge deck structure design. The effect of the section parameters of the pipe and the adhesive layer parameters on the stress of the GFRP interface is analyzed. The stability of the GFRP bridge panel under the load is checked, and the influence of the thickness of the top and bottom, the thickness of the web, the height of the member and the radius of the reverse angle on the buckling performance of the bridge deck is discussed. (4) the use of the projectile. The elastic equivalent theory of the GFRP bridge deck is equivalent to the orthotropic plate. Based on the orthotropic plate and shell theory, based on Kirchhoff's hypothesis, the differential equation for the control of the flexure surface of the GFRP bridge panel is derived. The deflection, the rotation angle and the internal force of the plate are calculated by the Navier method. The mechanical properties of the three kinds of temperature difference modes for the GFRP bridge panel are analyzed. The results show that the effect of temperature difference on the strength of GFRP bridge deck is very unfavorable. The stress value of the bridge panel and the stress value of the adhesive interface are greater than the whole temperature, and the gradient temperature changes. It is necessary to take the whole temperature in the design of the GFRP bridge deck to consider. (5) the fracture bridge deck with the bonding interface is affected by the temperature. The numerical analysis of the force performance is carried out. The energy release rate at the crack tip of the bonding interface between GFRP members under different working conditions is calculated by using the virtual crack closure method. The energy release rate under the unfavorable condition is established, and the third chapters of the cemented crack fracture criterion are used to evaluate the energy release rate with the fracture depth. The fatigue life of the cemented crack is calculated according to the Paris formula. The adverse effects on the critical load, strength and stiffness of the bridge deck caused by the existence of cracks are analyzed. In order to improve the service life of the GFRP bridge panel, it is suggested that the working quality of the bonding interface of the bridge deck is well controlled and the cementation crack can be avoided as much as possible.

【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:U443.31;U446

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳瑩;王全鳳;黃奕輝;楊勇新;林建華;;GFRP復(fù)合材料與磚界面粘結(jié)性能的數(shù)值模擬[J];工程力學(xué);2007年05期

2 郝慶多;張志春;王言磊;王勃;歐進(jìn)萍;;GFRP變形筋粘結(jié)性能試驗(yàn)研究[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2007年05期

3 楊保華;張松旺;黃誠(chéng);;GFRP筋抗拉試驗(yàn)研究[J];科技風(fēng);2008年14期

4 王全鳳;陳瑩;黃奕輝;楊勇新;林建華;;GFRP復(fù)合材料與粘土磚單剪粘結(jié)試驗(yàn)研究[J];建筑結(jié)構(gòu);2008年05期

5 王言磊;郝慶多;歐進(jìn)萍;;GFRP板與混凝土粘結(jié)性能試驗(yàn)[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2009年02期

6 馮鵬;齊玉軍;葉列平;陳必光;王綏明;;GFRP欄桿的受力性能及其結(jié)構(gòu)安全性研究[J];玻璃鋼/復(fù)合材料;2010年06期

7 江學(xué)良;楊慧;毛妙;孟茁超;彭朝暉;;玻璃纖維增強(qiáng)塑料(GFRP)錨桿粘結(jié)性能的影響因素分析[J];湖南城市學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年01期

8 陳靜;黃廣龍;陳巧;;GFRP筋拉伸力學(xué)性能試驗(yàn)研究[J];建筑科學(xué);2012年07期

9 孫麗;張娜;;海水環(huán)境腐蝕下的GFRP筋抗壓性能試驗(yàn)[J];沈陽(yáng)建筑大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期

10 夏偉;GFRP板對(duì)舊橋疲勞斷裂裂紋的影響[J];公路;2000年06期

相關(guān)會(huì)議論文 前10條

1 李明;汪明;何唯平;黃生文;;土木工程用GFRP筋的試驗(yàn)研究[A];工業(yè)建筑(2009·增刊)——第六屆全國(guó)FRP學(xué)術(shù)交流會(huì)論文集[C];2009年

2 Shinichi Hino;;Application of GFRP Pultruded Beam to Rehabilitation for Highway Bridge Decks[A];FRP與結(jié)構(gòu)補(bǔ)強(qiáng)——'05全國(guó)FRP與結(jié)構(gòu)加固學(xué)術(shù)會(huì)議論文精選[C];2005年

3 郝慶多;張志春;王言磊;歐進(jìn)萍;;GFRP/鋼絞線復(fù)合筋肋參數(shù)定型試驗(yàn)研究[A];第五屆全國(guó)FRP學(xué)術(shù)交流會(huì)論文集[C];2007年

4 劉漢東;于新政;;GFRP錨桿拉伸力學(xué)性能試驗(yàn)研究[A];第一屆全國(guó)水工巖石力學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年

5 劉迪;王全鳳;黃弈輝;岳清瑞;楊勇新;;GFRP加固磚墻抗剪性能試驗(yàn)研究[A];第三屆全國(guó)FRP學(xué)術(shù)交流會(huì)議論文集[C];2004年

6 Ken KURASHIKI;Daisuke TSURUGA;Teruo KIMURA;Masaharu IWAMOTO;;FATIGUE LIFE EVALUATION OF GFRP BY INFRARED THERMOGRAPHY[A];復(fù)合材料表征與應(yīng)用的新進(jìn)展[C];2006年

7 范海豐;劉玉擎;賀君;;GFRP-混凝土組合橋面板抗彎性能研究[A];第七屆全國(guó)建設(shè)工程FRP應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2011年

8 張杰;唐協(xié);李志業(yè);李明;;GFRP筋力學(xué)性能試驗(yàn)方法及設(shè)計(jì)參數(shù)的研究[A];第七屆全國(guó)建設(shè)工程FRP應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2011年

9 田文彤;周一亮;;GFRP絲材的力學(xué)性能研究[A];第三屆全國(guó)FRP學(xué)術(shù)交流會(huì)議論文集[C];2004年

10 王偉;付凱;薛偉辰;;模擬混凝土環(huán)境下GFRP筋耐久性研究[A];第七屆全國(guó)建設(shè)工程FRP應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2011年

相關(guān)博士學(xué)位論文 前10條

1 鐘志鵬;GFRP橋面板黏結(jié)界面力學(xué)分析與試驗(yàn)研究[D];東南大學(xué);2015年

2 秦國(guó)鵬;GFRP管鋼筋混凝土構(gòu)件力學(xué)性能研究[D];東北大學(xué) ;2010年

3 郝慶多;GFRP/鋼絞線復(fù)合筋混凝土梁力學(xué)性能及設(shè)計(jì)方法[D];哈爾濱工業(yè)大學(xué);2009年

4 白曉宇;GFRP抗浮錨桿錨固機(jī)理試驗(yàn)研究與理論分析[D];青島理工大學(xué);2015年

5 周樂;GFRP管鋼骨高強(qiáng)混凝土組合構(gòu)件力學(xué)性能研究[D];東北大學(xué);2009年

6 盧姍姍;配置鋼筋或GFRP筋活性粉末混凝土梁受力性能試驗(yàn)與分析[D];哈爾濱工業(yè)大學(xué);2010年

7 關(guān)宏波;GFRP套管鋼筋混凝土組合結(jié)構(gòu)的研究[D];大連理工大學(xué);2011年

8 劉驥夫;GFRP加固砌體墻力學(xué)性能研究[D];大連理工大學(xué);2006年

9 趙菲;外包GFRP板鋼筋混凝土梁的力學(xué)性能研究[D];浙江大學(xué);2013年

10 張志春;結(jié)構(gòu)新型熱固性FRP復(fù)合筋及其性能[D];哈爾濱工業(yè)大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 張飛;玻璃纖維聚合物(GFRP)筋混凝土板疲勞性能試驗(yàn)研究[D];鄭州大學(xué);2015年

2 鄒文磊;變形GFRP筋和變形鋼筋粘結(jié)性能及差異研究[D];長(zhǎng)安大學(xué);2015年

3 李娟;GFRP粘結(jié)加固鋼構(gòu)件的理論分析和試驗(yàn)研究[D];合肥工業(yè)大學(xué);2008年

4 陳四;GFRP連續(xù)配筋混凝土路面設(shè)計(jì)指標(biāo)研究[D];湖北工業(yè)大學(xué);2014年

5 朱雯娟;基于移位因子法的GFRP長(zhǎng)期性能試驗(yàn)及其應(yīng)用研究[D];武漢理工大學(xué);2013年

6 徐岱;GFRP筋混凝土圓截面構(gòu)件抗彎性能研究[D];南京林業(yè)大學(xué);2014年

7 宋偉;玻璃纖維(GFRP)筋混凝土構(gòu)件裂縫及變形計(jì)算研究[D];西南交通大學(xué);2008年

8 鄭祖嘉;GFRP筋粘結(jié)性能與作用機(jī)理研究[D];武漢科技大學(xué);2015年

9 郝海超;鹽堿環(huán)境下GFRP加固鋼筋混凝土梁耐久性試驗(yàn)研究[D];廣西大學(xué);2015年

10 周杰;紫外線照射下GFRP管混凝土圓柱的耐久性研究[D];浙江工業(yè)大學(xué);2015年

,

本文編號(hào):1894240

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1894240.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bf749***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com