天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

公鐵兩用雙層橋梁風(fēng)屏障氣動(dòng)機(jī)理及優(yōu)化研究

發(fā)布時(shí)間:2018-05-09 20:15

  本文選題:公鐵兩用雙層橋梁 + 風(fēng)屏障 ; 參考:《西南交通大學(xué)》2017年博士論文


【摘要】:隨著我國交通運(yùn)輸網(wǎng)絡(luò)逐漸向強(qiáng)風(fēng)場地區(qū)延伸,風(fēng)致車輛事故頻發(fā)。公鐵雙層橋梁,由于其結(jié)構(gòu)相對(duì)復(fù)雜,繞流加速效應(yīng)明顯,橋上車輛的行車環(huán)境將進(jìn)一步惡化。在橋面設(shè)置風(fēng)屏障是提高車輛行車安全性的有效措施之一,但風(fēng)屏障又會(huì)改變橋梁本身的抗風(fēng)性能。本文圍繞公鐵兩用雙層橋梁風(fēng)屏障的氣動(dòng)機(jī)理及優(yōu)化開展了如下研究:首先,通過風(fēng)屏障足尺模型風(fēng)洞試驗(yàn),測(cè)試了風(fēng)屏障后方的流場分布特性及其自身風(fēng)荷載,對(duì)比分析了風(fēng)屏障開孔形式及開孔孔徑對(duì)流場特性的影響,明確了不同風(fēng)屏障在來流方向及豎向上的有效防風(fēng)范圍,通過側(cè)向力及傾覆力矩等效原則,得到了不同風(fēng)屏障后方的等效風(fēng)速。進(jìn)一步,提出了適用于多孔形風(fēng)屏障及縱條形風(fēng)屏障的數(shù)值模擬方法,基于風(fēng)屏障足尺試驗(yàn)結(jié)果,驗(yàn)證了該模擬方法的可靠性。在此基礎(chǔ)上,研究了多孔形風(fēng)屏障透風(fēng)率分布,縱條形風(fēng)屏障障條排數(shù)和障條空間形狀等孔型參數(shù)對(duì)其后方流場特性的影響,并提出了相對(duì)較優(yōu)的參數(shù)取值。其次,將風(fēng)屏障、車輛及雙層橋梁作為一個(gè)系統(tǒng)進(jìn)行了縮尺模型風(fēng)洞試驗(yàn),測(cè)試了雙層橋梁上下橋面設(shè)置風(fēng)屏障前后的局部風(fēng)場,討論了風(fēng)屏障對(duì)CRH2列車和公路大貨車氣動(dòng)力系數(shù)的影響。在此基礎(chǔ)上,采用風(fēng)-車-橋耦合振動(dòng)分析方法,計(jì)算了大貨車及列車的動(dòng)態(tài)響應(yīng),分析了不同車道位置、風(fēng)速、車速以及風(fēng)屏障對(duì)車輛的行車安全性及舒適性的影響。再次,針對(duì)公鐵兩用桁架橋梁,測(cè)試了設(shè)置風(fēng)屏障前后橋梁的靜力三分力系數(shù)、顫振臨界風(fēng)速以及渦振響應(yīng),討論了風(fēng)屏障對(duì)主梁靜動(dòng)力氣動(dòng)特性的影響。針對(duì)分離式雙層箱梁橋,通過對(duì)比分析單獨(dú)鐵路橋梁和公鐵雙層橋梁上軌道上方的流場特性及列車氣動(dòng)力,明確了雙層橋面間的氣動(dòng)干擾效應(yīng)。進(jìn)一步,通過改變分離式雙層橋梁的間隔高度,得到不同間隔高度下,鐵路橋面流場特性和列車的氣動(dòng)力系數(shù)變化規(guī)律,提出了設(shè)置風(fēng)屏障前后,雙層橋梁間隔高度的建議值。最后,綜合考慮車輛及橋梁的安全性,將風(fēng)屏障防風(fēng)效果的優(yōu)化問題轉(zhuǎn)化成了一個(gè)多目標(biāo)優(yōu)化問題,并利用NSGA-Ⅱ多目標(biāo)優(yōu)化算法對(duì)風(fēng)屏障進(jìn)行了優(yōu)化,在此基礎(chǔ)上,采用數(shù)據(jù)包絡(luò)分析方法對(duì)多目標(biāo)優(yōu)化算法所得Pareto最優(yōu)解集進(jìn)行方案比選,得到了風(fēng)屏障最優(yōu)方案。結(jié)果表明:足尺模型風(fēng)洞試驗(yàn)結(jié)果可為日后該類風(fēng)屏障的優(yōu)化設(shè)計(jì)和數(shù)值模擬提供相對(duì)標(biāo)準(zhǔn)化的參考數(shù)據(jù)。本文提出的適用于多孔形風(fēng)屏障的二維模擬方法可較好地模擬該類風(fēng)屏障。風(fēng)屏障的透風(fēng)率分布、障條排數(shù)及障條空間形狀對(duì)其后方一定范圍內(nèi)的流場影響較為明顯,在今后的風(fēng)屏障優(yōu)化設(shè)計(jì)研究中應(yīng)該予以一定的重視。對(duì)雙層桁架橋梁的研究結(jié)果表明,風(fēng)屏障會(huì)導(dǎo)致車橋組合狀態(tài)下,主梁阻力系數(shù)增加,升力系數(shù)降低。設(shè)置風(fēng)屏障后,主梁顫振臨界風(fēng)速降低明顯,這說明風(fēng)屏障會(huì)導(dǎo)致該桁架橋的顫振穩(wěn)定性降低;主梁的渦振響應(yīng)得到了明顯的抑制,這說明風(fēng)屏障在一定程度上可以作為抑制該類主梁渦振的氣動(dòng)措施。對(duì)分離式雙層箱梁橋的研究結(jié)果表明,設(shè)置風(fēng)屏障會(huì)增加上下橋面間的氣動(dòng)干擾效應(yīng),無風(fēng)屏障時(shí),雙層橋面間隔高度僅需滿足基本建筑界限即可,設(shè)置風(fēng)屏障以后,當(dāng)間隔高度≥15m時(shí),鐵路橋面風(fēng)速剖面以及迎風(fēng)側(cè)軌道處列車氣動(dòng)力變化趨于平緩。針對(duì)風(fēng)屏障防風(fēng)效果的多目標(biāo)優(yōu)化問題,結(jié)果表明:采用NSGA-ⅡDEA混合算法對(duì)風(fēng)屏障進(jìn)行多目標(biāo)優(yōu)化是可行的,該優(yōu)化設(shè)計(jì)方法為風(fēng)屏障優(yōu)化問題提供了一種新思路。
[Abstract]:With the gradual extension of traffic and transportation network to the strong wind field area, the wind-induced vehicle accidents occur frequently. The double deck bridge of the public rail is more complicated, the acceleration effect of the flow around the bridge is obvious, and the driving environment on the bridge will be further deteriorated. The wind resistance mechanism of the bridge itself is changed. The aerodynamic mechanism and optimization of the double double deck bridge wind barrier are studied in this paper. First, through the wind barrier full scale model wind tunnel test, the flow field distribution characteristics and its own wind load behind the wind barrier are tested, and the open hole form and opening aperture convection field of the wind barrier are compared and analyzed. The effective wind protection range of different wind barriers in the direction and vertical direction of the wind barrier is clarified, and the equivalent wind velocity behind the different wind barriers is obtained by the equivalent principle of lateral force and overturning moment. Further, the numerical simulation method is put forward for the porous wind barrier and the longitudinal bar type wind barrier, based on the full scale test knot of the wind barrier. The reliability of the simulation method is verified. On this basis, the influence of the porosity distribution of the porous wind barrier, the number of bar row number and the shape of the barrier strip on the characteristics of the rear flow field is studied, and the relative optimum parameters are put forward. Secondly, the wind barrier, the vehicle and the double deck bridge are used as a system. A scale model wind tunnel test is carried out to test the local wind field before and after the wind barrier in the upper and lower deck of a double deck bridge. The influence of the wind barrier on the aerodynamic coefficient of the CRH2 train and the highway large truck is discussed. On this basis, the dynamic response of the large freight car and the train is calculated by the wind vehicle bridge coupling vibration analysis method, and the different vehicles are analyzed. The effect of channel position, wind speed, speed and wind barrier on vehicle safety and comfort. Again, the static three force coefficient, critical wind speed and vortex response of the bridge were tested before and after the wind barrier, and the influence of wind barrier on the dynamic aerodynamic characteristics of the main Liang Jing was discussed. By comparing and analyzing the characteristics of the flow field above the track on the track of a single railway bridge and the double deck bridge and the aerodynamic force of the train, the aerodynamic interference effect between the double deck bridge is clearly defined. Further, the characteristics of the flow field of the railway bridge and the aerodynamic force of the train are obtained by changing the interval height of the separate double deck bridge. The proposed value of the interval height of the double deck bridge before and after the wind barrier is set up. Finally, considering the safety of the vehicle and the bridge, the optimization problem of wind barrier effect is transformed into a multi-objective optimization problem, and the NSGA- II multi-objective optimization algorithm is used to optimize the wind barrier. On this basis, the optimization of the wind barrier is adopted. Using the method of data envelopment analysis, the optimal solution of the Pareto optimal solution set by the multi-objective optimization algorithm is selected and the optimal scheme of the wind barrier is obtained. The results show that the results of the full scale model wind tunnel test can provide relatively standardized reference data for the optimization design and numerical simulation of the wind barrier in the future. This paper is suitable for the porous wind. The two-dimensional simulation method of barrier can simulate the wind barrier better. The distribution of wind barrier, the number of barrier rows and the shape of the barrier space have obvious influence on the flow field in a certain range behind it. The study on the optimization design of the wind barrier in the future should be paid attention to. The results of the Double Deck Truss Bridge show that the wind barrier is the barrier. Under the condition of the bridge combination, the drag coefficient of the main beam increases and the lift coefficient decreases. After setting the wind barrier, the critical wind speed of the main beam decreases obviously, which indicates that the wind barrier will lead to the decrease of the chatter stability of the truss bridge, and the vortex vibration response of the main beam is obviously suppressed, which shows that the wind barrier can be used as a restraint to some extent. The results of the study on the vortex vibration of the main beam. The results of the study on the split double deck box girder bridge show that the wind barrier will increase the aerodynamic interference effect between the upper and lower deck. When the barrier is no wind barrier, the height of the double deck bridge interval is only to meet the basic building boundaries. The aerodynamic change of the train at the wind side track tends to be slow. In view of the multi-objective optimization problem of wind barrier effect, the results show that it is feasible to use the NSGA- II DEA hybrid algorithm to optimize the multi target of the wind barrier, and the optimization design method provides a new idea for the optimization of the wind barrier.

【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U443.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 何瑋;郭向榮;鄒云峰;何旭輝;楊著;;風(fēng)屏障透風(fēng)率對(duì)側(cè)風(fēng)下大跨度斜拉橋車-橋耦合振動(dòng)的影響[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期

2 李蓓;;安裝聲屏障的鐵路橋梁的梁型選擇與比較[J];鐵路工程造價(jià)管理;2016年03期

3 李永樂;姜孝偉;蘇洋;李龍安;廖海黎;;分離式公鐵雙層橋面相互氣動(dòng)干擾及對(duì)列車走行性的影響[J];振動(dòng)與沖擊;2016年09期

4 白璐;申愛琴;韋振勛;;公路防風(fēng)結(jié)構(gòu)物實(shí)測(cè)效果比較與優(yōu)化設(shè)置模擬研究[J];公路交通科技;2016年02期

5 鄒云峰;何旭輝;李歡;秦紅禧;史康;黃永明;;風(fēng)屏障對(duì)車橋組合狀態(tài)下中間車輛氣動(dòng)特性的影響[J];振動(dòng)工程學(xué)報(bào);2016年01期

6 何瑋;郭向榮;鄒云峰;何旭輝;;風(fēng)屏障透風(fēng)率對(duì)車-橋系統(tǒng)氣動(dòng)特性影響的風(fēng)洞試驗(yàn)研究[J];振動(dòng)與沖擊;2015年24期

7 李波;楊慶山;馮少華;;防風(fēng)柵對(duì)高速列車擋風(fēng)作用的數(shù)值模擬[J];工程力學(xué);2015年12期

8 蘇洋;李永樂;陳寧;鮑玉龍;李龍安;;分離式公鐵雙層橋面橋梁-列車-風(fēng)屏障系統(tǒng)氣動(dòng)效應(yīng)風(fēng)洞試驗(yàn)研究[J];土木工程學(xué)報(bào);2015年12期

9 郭薇薇;夏禾;張?zhí)?;橋梁風(fēng)屏障的氣動(dòng)效應(yīng)及其對(duì)高速列車運(yùn)行安全的影響分析[J];工程力學(xué);2015年08期

10 高文文;張偉;;正方形排列四圓柱繞流的數(shù)值模擬[J];天津城建大學(xué)學(xué)報(bào);2015年03期

相關(guān)會(huì)議論文 前3條

1 盧燕;徐志勝;;基于Cadna/A軟件的公鐵雙層橋半封閉聲屏障降噪效果模擬[A];2010’中國西部聲學(xué)學(xué)術(shù)交流會(huì)論文集[C];2010年

2 萬德成;;二維多圓柱渦激運(yùn)動(dòng)的數(shù)值模擬[A];第二十一屆全國水動(dòng)力學(xué)研討會(huì)暨第八屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨兩岸船舶與海洋工程水動(dòng)力學(xué)研討會(huì)文集[C];2008年

3 汪正華;葛耀君;曹豐產(chǎn);;金塘大橋行車風(fēng)環(huán)境及其控制措施的數(shù)值模擬[A];第十四屆全國結(jié)構(gòu)風(fēng)工程學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2009年

相關(guān)博士學(xué)位論文 前10條

1 劉世忠;雙層公路鋼桁梁橋車橋耦合振動(dòng)研究[D];長安大學(xué);2015年

2 陳寧;側(cè)風(fēng)作用下橋上汽車行車安全性及防風(fēng)措施研究[D];西南交通大學(xué);2015年

3 張?zhí)?強(qiáng)風(fēng)場中高速鐵路橋梁列車運(yùn)行安全分析及防風(fēng)措施研究[D];北京交通大學(xué);2013年

4 向活躍;高速鐵路風(fēng)屏障防風(fēng)效果及其自身風(fēng)荷載研究[D];西南交通大學(xué);2013年

5 陳國棟;基于代理模型的多目標(biāo)優(yōu)化方法及其在車身設(shè)計(jì)中的應(yīng)用[D];湖南大學(xué);2012年

6 郗艷紅;橫風(fēng)作用下的高速列車氣動(dòng)特性及運(yùn)行安全性研究[D];北京交通大學(xué);2012年

7 李田;高速列車流固耦合計(jì)算方法及動(dòng)力學(xué)性能研究[D];西南交通大學(xué);2012年

8 劉海濤;強(qiáng)風(fēng)作用下列車—汽車—橋梁時(shí)變系統(tǒng)的動(dòng)力響應(yīng)及行車安全性、舒適性研究[D];中南大學(xué);2011年

9 劉德軍;風(fēng)—列車—線路—橋梁系統(tǒng)耦合振動(dòng)研究[D];西南交通大學(xué);2010年

10 馬麟;考慮駕駛員行為的風(fēng)—汽車—橋梁系統(tǒng)空間耦合振動(dòng)研究[D];長安大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 葛光輝;考慮三角形擋風(fēng)屏作用的風(fēng)—車—橋耦合動(dòng)力分析[D];北京交通大學(xué);2016年

2 谷紅強(qiáng);大跨度公鐵兩用斜拉橋風(fēng)致抖振時(shí)域分析及擋風(fēng)屏影響研究[D];西南交通大學(xué);2015年

3 安桂萍;風(fēng)區(qū)鐵路沿線防風(fēng)屏障結(jié)構(gòu)靜動(dòng)力分析[D];大連海事大學(xué);2015年

4 李璐杰;風(fēng)障對(duì)高速公路橋梁段和路堤段區(qū)域氣流場的影響[D];北京交通大學(xué);2014年

5 苗永抗;超大跨度公軌兩用斜拉橋風(fēng)—車—橋耦合振動(dòng)研究[D];中南大學(xué);2014年

6 葉劍;高速鐵路新型風(fēng)屏障及其橫風(fēng)氣動(dòng)性能數(shù)值模擬研究[D];中南大學(xué);2014年

7 唐臻;大跨度公鐵兩用鋼桁梁斜拉橋抖振時(shí)域及穩(wěn)定性分析[D];西南交通大學(xué);2014年

8 郭威;公路橋梁側(cè)風(fēng)行車安全對(duì)策的數(shù)值方法研究[D];長安大學(xué);2013年

9 戴禮勇;大跨度公鐵兩用懸索橋靜風(fēng)穩(wěn)定性研究[D];西南交通大學(xué);2013年

10 彭榮華;公軌兩用高低塔斜拉橋風(fēng)—車—橋耦合振動(dòng)研究[D];中南大學(xué);2013年



本文編號(hào):1867272

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1867272.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ee846***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com