天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

交通場景圖像中車輛檢測和分類研究

發(fā)布時間:2018-04-30 19:17

  本文選題:車輛檢測 + 隱藏變量部件模型 ; 參考:《北京交通大學》2017年碩士論文


【摘要】:汽車保有量的逐年增加,攝像頭的大量應用,使得交通場景中車輛的自動化管理已經(jīng)成為一大難題。交通場景圖像中車輛檢測和分類技術是解決這一問題的重要手段,論文選題具有重要的理論意義和實際應用價值。論文主要工作如下:1.給出了一種針對車輛的隱藏變量部件模型訓練方法。基于隱藏變量支持向量機,對每類車型都分別訓練了隱藏變量部件模型用于車輛檢測,模型包含三個部分:主模型、部件模型及部件空間位置關系。車輛模型不僅可以從整體上描述車輛的外觀輪廓信息,還可以從細節(jié)上描述車輛的部件輪廓信息。實驗表明,訓練得到的各類車輛模型可以有效的在交通場景圖像中檢測出車輛的位置。2.給出了一種基于隱藏變量部件模型的車輛分類方法。用訓練得到的各類車輛模型分別檢測交通場景圖像,選擇響應值最大模型的檢測結(jié)果提取車輛圖像區(qū)域。在提取的車輛圖像區(qū)域中用所有類別模型進行模型配準,找到最佳的、可以代表各類車型特征的主模型及部件模型位置,能夠最大程度的反應車輛的獨有信息,具有較大的區(qū)分度。提取所有位置的HOG特征作為圖像的表示,利用SVM分類器進行分類。經(jīng)實驗表明,同當前已有方法對比,本文所提方法具有更高的分類準確率。3.給出了一種基于卷積神經(jīng)網(wǎng)絡的車輛分類方法。使用卷積神經(jīng)網(wǎng)絡(CNN)對模型配準得到的主模型及部件模型位置進行深度特征提取,將得到的高維深度特征進行主成分分析(PCA),再利用SVM分類器進行分類。實驗結(jié)果表明,該方法可以有效的提升分類準確率。
[Abstract]:With the increase of vehicle ownership and the application of cameras, the automatic management of vehicles in traffic scene has become a big problem. Vehicle detection and classification technology in traffic scene images is an important means to solve this problem. The topic of this paper has important theoretical significance and practical application value. The main work of this paper is as follows: 1. A training method of hidden variable component model for vehicle is presented. Based on the hidden variable support vector machine (SVM), the hidden variable component model is trained for each type of vehicle for vehicle detection. The model consists of three parts: the main model, the component model and the spatial position relationship of the components. The vehicle model can not only describe the contour information of the vehicle as a whole, but also describe the contour information of the parts of the vehicle in detail. Experiments show that all kinds of vehicle models can effectively detect the position of vehicles in traffic scene images. A vehicle classification method based on hidden variable component model is presented. The traffic scene images are detected by training vehicle models, and the vehicle image regions are extracted by selecting the detection results of the maximum response model. In the extracted vehicle image region, all kinds of models are used for model registration to find the best location of the main model and the component model, which can represent the characteristics of various types of vehicle, and can reflect the unique information of the vehicle to the greatest extent. It has a large degree of differentiation. The HOG feature of all positions is extracted as the representation of the image, and the SVM classifier is used to classify the image. The experimental results show that the proposed method has a higher classification accuracy. 3. A vehicle classification method based on convolution neural network is presented. By using convolution neural network (CNN), the location of the main model and the component model was extracted. The high dimensional depth features were analyzed by principal component analysis (PCA) and then classified by SVM classifier. Experimental results show that this method can effectively improve the classification accuracy.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U495;TP391.41

【引證文獻】

相關期刊論文 前1條

1 姜尚潔;羅斌;劉軍;張云;;基于無人機的車輛目標實時檢測[J];測繪通報;2017年S1期

,

本文編號:1825834

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1825834.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶6b23d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com