大跨度波形鋼腹板連續(xù)剛構(gòu)橋受力特點及剪力鍵試驗研究
本文選題:波形鋼腹板 + 箱梁橋; 參考:《西南交通大學(xué)》2015年博士論文
【摘要】:波形鋼腹板鋼筋混凝土組合箱梁結(jié)構(gòu)具有諸多優(yōu)勢,近些年來在國外得到了較快的發(fā)展,國內(nèi)也有較多研究。國內(nèi)外對波形鋼腹板特性的研究結(jié)論主要通過數(shù)值分析、模型試驗得到;對適用于大跨度波形鋼腹板箱梁橋剪力鍵研究的針對性不強,或與其構(gòu)造及受力特點不完全相同。以蘭州北環(huán)小砂溝大橋為工程背景,對大跨度波形鋼腹板箱梁橋的主要特性進行了理論研究,針對大跨度波形鋼腹板箱梁橋剪力鍵的構(gòu)造特點和受力特點,完成了13組共39個1:1比例的剪力鍵模型試驗,對大跨度波形鋼腹板的剪力鍵特性進行了研究,主要內(nèi)容如下:1.通過波形鋼腹板縱向剛度相等原理,推導(dǎo)了波形鋼腹板的縱向等效厚度及等效彈性模量的計算方法,從理論上證明波形鋼腹板所承擔(dān)彎矩占全截面總彎矩的比例很小,可以忽略,在計算波形鋼腹板箱梁的抗彎承載能力時,可僅考慮頂?shù)装宓淖饔?而不考慮波形鋼腹板的作用;從理論上研究波形鋼腹板的抗剪性能,證明鋼腹板中的剪應(yīng)力在鋼腹板高度方向上基本相等,鋼腹板基本為純剪切受力狀態(tài);得出鋼腹板所承擔(dān)的剪力占總剪力比例規(guī)律的計算公式;在波形鋼腹板箱梁結(jié)構(gòu)中,頂?shù)装逡惺芟喈斠徊糠值慕孛婕袅?波形鋼腹板所承擔(dān)的剪力占總截面剪力的比例不超過85%。2.從理論上研究變高度波形鋼腹板箱梁中梁高變化對波形鋼腹板中剪應(yīng)力的影響,并得出相應(yīng)計算公式。當截面負彎矩增大且截面高度增加時,底板中的壓力可抵消一部分截面剪力,反之,當截面負彎矩增大且截面高度降低時,底板中的壓力將增加腹板中的剪力。3.研究滑移對波形鋼腹板箱梁承載能力和撓度的影響,研究滑移產(chǎn)生附加彎矩和附加撓度的計算方法。4.將PBL剪力鍵的承載能力分為彈性承載能力和極限承載能力,對彈性承載能力附加滑移量約束后,成為具有實際工程意義的設(shè)計承載能力。通過剪力鍵模型試驗,得出適用于大跨度波形鋼腹板箱梁橋剪力鍵的主要特性:(1)PBL剪力鍵具有良好的延性性能,在破壞前均有明顯的屈服過程,滑移有較為明顯的增長;具有較高的設(shè)計承載能力和極限承載能力,其極限承載能力明顯大于設(shè)計承載能力,極限承載能力與設(shè)計承載能力之比大于2.0。(2)鋼板開孔直徑越大,PBL剪力鍵的設(shè)計承載能力和極限承載能力也越大;當開孔直徑大到一定程度時,鋼板的變形會成為滑移變形的主要因素,PBL剪力鍵的鋼板成為控制因素,達到極限承載能力時,剪力鍵的破壞由鋼板的破壞引起。(3)貫穿鋼筋直徑對PBL剪力鍵設(shè)計承載能力的影響很小;貫穿鋼筋直徑對PBL剪力鍵極限承載能力的影響較大,鋼筋直徑越大,極限承載能力越大。(4)鋼板厚度對PBL剪力鍵的設(shè)計承載能力和極限承載能力均有較大影響,鋼板厚度越大,其設(shè)計承載能力和極限承載能力均越大。(5)預(yù)拉應(yīng)力能夠減小PBL剪力鍵的設(shè)計承載能力和極限承載能力,尤其當橫向拉應(yīng)力達到混凝土抗拉強度時,其設(shè)計承載能力和極限承載能力的減小更為明顯;預(yù)壓應(yīng)力能夠提高PBL剪力鍵的設(shè)計承載能力和極限承載能力;預(yù)應(yīng)力的影響在設(shè)計承載能力公式與極限承載能力公式計算中可單獨考慮。(6)鋼板開梯形孔的PBL剪力鍵由于開孔面積較大,其破壞形態(tài)、承載能力特點與開大直徑圓孔PBL鍵的破壞形態(tài)、承載能力特點相似。(7)若在角鋼連接鍵中沒有配置垂直于受力方向的受力鋼筋,則剪力鍵的延性性能較差,在破壞前屈服現(xiàn)象不明顯,破壞前的滑移量為2mm左右,屬于脆性破壞;在不配置鋼筋時,單個角鋼剪力連接件的極限承載能力代表值為1700kN。(8)將剪力鍵極限承載能力與設(shè)計承載能力之比作為剪力鍵的另一個延性指標Ⅱ,剪力鍵極限承載能力所對應(yīng)的滑移量與0.2mm之比作為延性指標Ⅰ,延性指標Ⅱ較延性指標Ⅰ數(shù)值較小,更加穩(wěn)定。(9)根據(jù)試驗資料擬合PBL剪力鍵設(shè)計承載能力和極限承載能力的計算公式,該公式僅適用于波形鋼腹板箱梁腹板與頂?shù)装寤炷林g連接的PBL剪力鍵,該類剪力鍵只有一排開孔,該公式實在PBL剪力鍵的鋼板高度為20cm,孔徑60~90mm之間,貫穿鋼筋直徑16~25mm之間,鋼板厚度20~24mm之間得出的,當這些參數(shù)超出這個范圍太多時,該計算公式不再適用。(10)對模型試件進行有限元分析,將計算結(jié)果與試驗結(jié)果對比分析表明,試件0.2mm滑移對應(yīng)荷載的計算值試驗值差異除配置預(yù)拉應(yīng)力的試件外均較小,差異最大值為22.1%,試件極限承載能力的計算值與試驗值除兩個試件外均不大,差異最大值為22.6%。5.研究了蘭州北環(huán)小砂溝大橋的構(gòu)造特點和受力特性,證明小砂溝大橋受力合理。
[Abstract]:The reinforced concrete composite box girder with corrugated steel web has many advantages, which has been developed rapidly abroad in recent years, and there are many studies in China. The research conclusions on the characteristics of corrugated steel web at home and abroad are mainly through numerical analysis, model test, and the needles applied to the shear bond of large span corrugated steel web box girder bridge. The main characteristics of the large span corrugated steel web box girder bridge are theoretically studied in the background of the Lanzhou North Ring small shitge bridge. 13 groups of 39 1:1 shear forces are completed in view of the structural characteristics and the stress characteristics of the shear bond of the large span corrugated steel web box girder bridge. The shear bond characteristics of the large span corrugated steel webs are studied by the key model test. The main contents are as follows: 1. the calculation method of the longitudinal equivalent thickness and the equivalent elastic modulus of the corrugated steel webs is derived by the principle of the equal longitudinal stiffness of the corrugated steel webs. It is proved theoretically that the bending moment of the corrugated steel web accounts for the total bending moment of the full section. The proportion of the corrugated steel web can be neglected. In calculating the flexural capacity of the corrugated steel web box girder, only the action of the top and bottom can be considered, but the function of the corrugated steel web is not considered. The shear behavior of the corrugated steel web is studied theoretically. It is proved that the shear stress in the steel web is basically equal to the height direction of the steel web, and the steel web is basically pure shear. The shear stress state of the steel web is calculated. In the box girder structure of corrugated steel web, the top and bottom should bear a considerable section of shear force, and the proportion of the shear force of the corrugated steel web is not more than 85%.2.. The influence of the high change of the middle beam on the shear stress in the corrugated steel webs and the corresponding formula are obtained. When the negative bending moment of the section increases and the height of the section increases, the pressure in the floor can offset a part of the shear force. On the contrary, when the negative bending moment increases and the height of the section is reduced, the pressure in the bottom plate will increase the shear.3. of the web and study slip. The influence of the load-bearing capacity and deflection of corrugated steel web box girder, the calculation method of additional bending moment and additional deflection produced by slip.4. divides the bearing capacity of PBL shear bond into elastic bearing capacity and ultimate bearing capacity. After constraint of additional slip quantity of elastic bearing capacity, it becomes a design bearing capacity with practical engineering significance. The shear bond model test shows the main characteristics of the shear bond for the large span corrugated steel web box girder bridge: (1) the PBL shear bond has good ductility performance. It has obvious yield process before the failure, and the slip has a more obvious increase. It has high design bearing capacity and ultimate bearing capacity, and its ultimate bearing capacity is obvious. In the design bearing capacity, the ratio of ultimate bearing capacity to design bearing capacity is greater than that of 2.0. (2), the larger the diameter of the steel plate is, the greater the design bearing capacity and ultimate bearing capacity of the PBL shear bond. When the diameter of the opening is large to a certain extent, the deformation of the steel plate will be the main factor of the slip deformation, and the steel plate of the PBL shear bond becomes the control factor. When the ultimate bearing capacity is reached, the failure of the shear bond is caused by the failure of the steel plate. (3) the influence of the diameter of the reinforcing bar on the design bearing capacity of the PBL shear bond is very small; the diameter of the steel bar has great influence on the ultimate bearing capacity of the PBL shear bond, the larger the diameter of the steel bar, the greater the ultimate bearing capacity. (4) the design of the thickness of the steel plate to the PBL shear bond. The load capacity and ultimate bearing capacity have great influence, the greater the thickness of the steel plate, the greater the design bearing capacity and ultimate bearing capacity. (5) the pretension stress can reduce the design bearing capacity and ultimate bearing capacity of the PBL shear bond, especially when the transverse tensile stress reaches the tensile strength of concrete, its design bearing capacity and ultimate bearing capacity It is more obvious that the preloading stress can improve the design bearing capacity and ultimate bearing capacity of the PBL shear bond. The influence of prestress can be considered in the calculation of the formula of design bearing capacity and the formula of ultimate bearing capacity. (6) the PBL shear bond of the trapezoidal hole of the steel plate is larger, its failure mode and the bearing capacity characteristics of the shear stress key of the trapezoidal hole of the steel plate The bearing capacity characteristics are similar to the PBL key of opening large diameter circular holes. (7) if there is no force reinforcing bar perpendicular to the direction of force in the connection key of the angle steel, the ductility of the shear bond is poor, the yield phenomenon is not obvious before the failure, the slip amount before the failure is 2mm left right, which belongs to the brittle failure; the single angle is not used when the steel bar is not configured. The representative value of the ultimate bearing capacity of the steel shear connector is 1700kN. (8). The ratio of the ultimate bearing capacity to the design bearing capacity is another ductility index of the shear bond. The ratio of the slip quantity to the 0.2mm is the ductility index of the shear bond ultimate bearing capacity. The ductility index II is smaller than the ductility index I, and the value of the ductility index is smaller. (9) (9) according to the experimental data fitting the calculation formula of the design bearing capacity and ultimate bearing capacity of the shear bond, this formula is only applicable to the PBL shear bond which is connected between the web of corrugated steel web box girder web and the top and bottom concrete. This kind of shear bond has only one opening hole, and the formula is real at the height of the steel plate of the PBL shear bond, and the diameter is 60 to 90mm. Between 16 and 25mm of steel diameter, the thickness of steel plate is between 20 and 24mm. When these parameters exceed this range, the formula is no longer applicable. (10) the finite element analysis of the model specimen is carried out. The comparison and analysis of the calculated results with the test results show that the difference of the test values of the 0.2mm slip corresponding to the load is different except for the difference in the test values of the calculated values of the specimens. The specimen with pre tension stress is smaller and the maximum difference is 22.1%. The calculated value of the ultimate bearing capacity of the specimen and the test value are not large except two test pieces. The difference is 22.6%.5. to study the structural characteristics and stress characteristics of the Lanzhou North Ring small sand ditch bridge, which proves that the force of the small sand ditch bridge is reasonable.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U441;U448.23
【相似文獻】
相關(guān)期刊論文 前10條
1 呂曉;黃勇;任偉鑫;;基于不同類型剪力鍵空腹板架的靜力分析[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2010年03期
2 王伯華;舊池改造的有效方法──剪力鍵法[J];特種結(jié)構(gòu);1995年01期
3 仲偉秋;滕麗榮;;剪力鍵形狀對海上風(fēng)電場灌漿連接段影響[J];低溫建筑技術(shù);2014年03期
4 張清華;李喬;唐亮;;橋塔鋼-混凝土結(jié)合段剪力鍵破壞機理及極限承載力[J];中國公路學(xué)報;2007年01期
5 李倫貴;趙文成;;全預(yù)制預(yù)應(yīng)力混凝土橋梁聯(lián)接系統(tǒng)分析[J];土木工程學(xué)報;2013年S1期
6 林牧;;剛性剪力鍵力學(xué)性能分析[J];山西建筑;2011年09期
7 張定華,陳國輝;剪力鍵式空腹夾層板靜力計算的解析法[J];空間結(jié)構(gòu);1997年03期
8 張煜;;不同邊界條件剪力鍵式空腹夾層板固有頻率的計算[J];空間結(jié)構(gòu);2010年01期
9 張定華;剪力鍵式空腹夾層板的整體穩(wěn)定分析[J];貴州工業(yè)大學(xué)學(xué)報;1997年04期
10 夏修身;陳興沖;王;;王常峰;;剪力鍵對隔震橋梁地震反應(yīng)的影響[J];地震工程與工程振動;2012年06期
相關(guān)會議論文 前5條
1 崔冰;孟凡超;趙燦輝;董萌;唐亮;;南京長江第三大橋主塔鋼-混結(jié)合段設(shè)計研究[A];中國公路學(xué)會橋梁和結(jié)構(gòu)工程分會2005年全國橋梁學(xué)術(shù)會議論文集[C];2005年
2 劉德軍;童登國;肖林;李小珍;;鋼-混凝土組合結(jié)構(gòu)在梁橋中的應(yīng)用[A];第17屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅱ冊)[C];2008年
3 蘇小波;李小珍;肖林;衛(wèi)星;易虹嵐;;PBL剪力鍵力學(xué)性能的研究現(xiàn)狀及展望[A];第21屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅱ冊[C];2012年
4 衛(wèi)星;肖林;;鋼混結(jié)構(gòu)PBL剪力鍵推出和推入試驗力學(xué)特征及破壞機理[A];鋼結(jié)構(gòu)工程研究(十)——中國鋼結(jié)構(gòu)協(xié)會結(jié)構(gòu)穩(wěn)定與疲勞分會第14屆(ISSF-2014)學(xué)術(shù)交流會暨教學(xué)研討會論文集[C];2014年
5 李小珍;衛(wèi)星;王子健;強士中;;世界最大跨度連續(xù)剛構(gòu)橋鋼-砼接頭應(yīng)力仿真分析[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)分會第十一次年會論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 宋隨弟;大跨度波形鋼腹板連續(xù)剛構(gòu)橋受力特點及剪力鍵試驗研究[D];西南交通大學(xué);2015年
2 向紅;裝配式鋼箱—預(yù)應(yīng)力混凝土組合梁性能試驗與設(shè)計理論研究[D];重慶交通大學(xué);2012年
3 司秀勇;橋梁鋼混結(jié)合段力學(xué)特性理論及試驗研究[D];燕山大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 周浩;南京長江三橋橋塔鋼—混結(jié)合段剪力鍵選型試驗研究[D];西南交通大學(xué);2005年
2 毛久群;鋼—預(yù)制混凝土板剪力聯(lián)結(jié)構(gòu)造受力性能分析[D];重慶交通大學(xué);2012年
3 劉禹陽;節(jié)段接頭剪力鍵應(yīng)力與地基沉降關(guān)系及剪力承擔(dān)比研究[D];長安大學(xué);2014年
4 胡指南;沉管隧道節(jié)段接頭剪力鍵結(jié)構(gòu)形式與力學(xué)特性研究[D];長安大學(xué);2013年
5 王鵬;沉管隧道節(jié)段接頭剪力鍵受力特性及作用機理研究[D];長安大學(xué);2014年
6 李倩;港工鋼管樁與上部結(jié)構(gòu)剪力鍵連接方式的設(shè)計方法研究[D];重慶交通大學(xué);2014年
7 李貴峰;采用有機聚合物剪力鍵的鋼—混凝土組合梁結(jié)構(gòu)行為分析[D];西南交通大學(xué);2013年
8 彭華麗;改進型PBL剪力鍵受力性能試驗研究[D];重慶交通大學(xué);2010年
9 趙成棟;PBL鍵機理與試驗研究[D];長安大學(xué);2010年
10 張勇;南京長江第三大橋橋塔鋼混結(jié)合段結(jié)構(gòu)特性研究[D];西南交通大學(xué);2005年
,本文編號:1792341
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1792341.html