近斷層地震動(dòng)輸入方向?qū)倶?gòu)橋地震反應(yīng)影響
本文選題:連續(xù)剛構(gòu)橋 切入點(diǎn):近斷層地震動(dòng) 出處:《大連海事大學(xué)》2017年碩士論文
【摘要】:我國(guó)西部斷層和地震帶廣泛分布,地下構(gòu)造活動(dòng)較為活躍,地震危險(xiǎn)性較高。地震斷層綿延百公里甚至上千公里,西部交通建設(shè)中橋梁無(wú)法避免臨近(或穿越)地震斷層,近斷層地震動(dòng)下橋梁抗震問(wèn)題突出。由于近斷層地震動(dòng)具有明顯的向前方向性效應(yīng),一般在垂直斷層方向會(huì)存在明顯的大脈沖,結(jié)構(gòu)地震破壞效應(yīng)顯著。連續(xù)剛構(gòu)橋是西部山區(qū)采用較多的橋型,橋梁走向與斷層走向并不總是平行或垂直,在目前橋梁抗震分析中對(duì)該問(wèn)題考慮較少。由此,本文研究了連續(xù)剛構(gòu)橋走向與斷層走向之間夾角對(duì)橋梁地震反應(yīng)的影響問(wèn)題。主要工作進(jìn)展如下:(1)介紹了近斷層地震動(dòng)及其特點(diǎn),分別從橋梁易損性分析、減隔震設(shè)計(jì)和地震動(dòng)輸入方向效應(yīng)等方面闡述了近斷層地震動(dòng)下橋梁反應(yīng)的研究現(xiàn)狀。(2)利用Midas Civil軟件建立3座墩高分別126m、58m和22m的大跨度連續(xù)剛構(gòu)橋計(jì)算模型,分析了各自結(jié)構(gòu)的自振特性。(3)利用美國(guó)PEER交通抗震波中的近斷層地震動(dòng)及適當(dāng)旋轉(zhuǎn)為輸入,對(duì)比了橋梁縱橋向與斷層走向之間不同夾角時(shí),近斷層雙向水平地震激勵(lì)下連續(xù)剛構(gòu)橋的地震響應(yīng)。分析表明:橋梁縱橋向最大反應(yīng)容易發(fā)生在夾角為60°至120°之間,而橋梁橫橋向的最大反應(yīng)容易發(fā)生在夾角為0°至30°或者150°至180°之間。就算例橋梁結(jié)果,認(rèn)為上述結(jié)論受橋梁墩高的影響并且橫橋向的影響要大于縱橋向。(4)研究了近斷層豎向地震動(dòng)對(duì)連續(xù)剛構(gòu)橋地震反應(yīng)的影響,與僅考慮雙向水平地震輸入對(duì)比表明:豎向地震動(dòng)對(duì)橋墩縱向地震反應(yīng)影響很小,增加不足10%;但豎向地震動(dòng)會(huì)增加主梁的豎向彎矩反應(yīng),其放大系數(shù)可能達(dá)到2-3倍及以上,特別是邊跨與主墩的交界處。
[Abstract]:In western China, faults and seismic belts are widely distributed, underground structures are active and seismic risk is high. The seismic faults extend for 100 kilometers or even thousands of kilometers. Bridges in traffic construction in western China cannot avoid approaching (or crossing) seismic faults. The seismic problem of bridges under near-fault earthquake is serious. Due to the obvious forward directional effect of near-fault seismic action, there are usually large pulses in the vertical fault direction. The continuous rigid frame bridge is a bridge type in the western mountainous area. The strike of the bridge is not always parallel or vertical to the strike of the fault, so the problem is seldom considered in the seismic analysis of the bridge at present. In this paper, the influence of the angle between strike and fault strike of continuous rigid frame bridge on the seismic response of the bridge is studied. The main work progress is as follows: 1) the near fault ground motion and its characteristics are introduced, and the vulnerability of the bridge is analyzed respectively. In this paper, the research status of bridge response under near-fault ground earthquake is described in the aspects of isolation design and directional effect of ground motion input. The calculation models of three long-span continuous rigid frame bridges with the height of 126mt 58m and 22m, respectively, are established by using Midas Civil software. The natural vibration characteristics of each structure are analyzed. (3) using the near fault ground earthquake and proper rotation in the seismic wave of PEER traffic in the United States as the input, the different angles between the longitudinal bridge and the fault strike are compared. The seismic response of a continuous rigid frame bridge subjected to horizontal seismic excitation in the near fault direction is analyzed. The results show that the maximum response of the bridge in the longitudinal direction occurs easily between 60 擄and 120 擄in the angle of the bridge. The maximum response of the transverse direction of the bridge is between 0 擄and 30 擄or 150 擄to 180 擄. It is considered that the above conclusions are influenced by the height of bridge piers and the influence of transverse bridge direction is greater than that of longitudinal bridge direction.) the influence of vertical ground motion near fault on seismic response of continuous rigid frame bridge is studied. The comparison with only considering the bidirectional horizontal seismic input shows that the vertical ground motion has little effect on the longitudinal seismic response of the pier and increases less than 100.But the vertical ground motion will increase the vertical moment response of the main beam, and its magnification factor may reach 2-3 times or more. In particular, the border between the side span and the main pier.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U442.55;U448.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曲哲;師驍;;汶川地震和魯?shù)榈卣鸬拿}沖型地震動(dòng)比較研究[J];工程力學(xué);2016年08期
2 李帥;王景全;顏曉偉;馮宇;;近斷層地震動(dòng)空間分布特征對(duì)斜拉橋地震響應(yīng)影響[J];土木工程學(xué)報(bào);2016年06期
3 董俊;單德山;張二華;馬騰;;非規(guī)則連續(xù)剛構(gòu)橋地震易損性分析[J];西南交通大學(xué)學(xué)報(bào);2015年05期
4 賈俊峰;杜修力;韓強(qiáng);;近斷層地震動(dòng)特征及其對(duì)工程結(jié)構(gòu)影響的研究進(jìn)展[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年01期
5 李寧;李忠獻(xiàn);李楊;;近斷層地震動(dòng)作用下橋梁結(jié)構(gòu)易損性曲面分析[J];地震工程與工程振動(dòng);2014年S1期
6 石巖;王東升;孫治國(guó);;近斷層地震動(dòng)下減隔震橋梁地震反應(yīng)分析[J];橋梁建設(shè);2014年03期
7 石巖;王進(jìn);王東升;沈永林;劉錫媛;;近斷層地震動(dòng)作用下山區(qū)隔震橋梁地震損傷分析[J];地震工程與工程振動(dòng);2013年06期
8 陳令坤;張楠;胡超;徐慶元;;近斷層地震方向脈沖效應(yīng)對(duì)高速鐵路橋梁彈塑性反應(yīng)的影響[J];振動(dòng)與沖擊;2013年15期
9 楊紅;楊小乙;黃皓;;地震動(dòng)輸入方向?qū)臻g框架非線性反應(yīng)特征的影響[J];工業(yè)建筑;2013年07期
10 王東升;司炳君;孫治國(guó);李曉莉;艾慶華;;地震作用下鋼筋混凝土橋墩塑性鉸區(qū)抗剪強(qiáng)度試驗(yàn)[J];中國(guó)公路學(xué)報(bào);2011年02期
,本文編號(hào):1667690
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1667690.html