基于聲振法的隧道二襯脫空檢測(cè)技術(shù)研究
本文選題:聲振法 切入點(diǎn):隧道二襯脫空檢測(cè) 出處:《西安科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隧道二襯脫空嚴(yán)重威脅道路的安全運(yùn)營,及時(shí)開展檢測(cè)、預(yù)防工作尤為重要。為解決現(xiàn)有檢測(cè)方法中存在的問題,降低檢測(cè)成本,進(jìn)行聲振法檢測(cè)技術(shù)研究。將錘擊激勵(lì)下的襯砌響應(yīng)過程概化為局部二襯塊體的隨機(jī)自由振動(dòng)問題,進(jìn)行聲振檢測(cè)試驗(yàn)及數(shù)值模態(tài)分析,通過對(duì)聲振信號(hào)及模態(tài)參數(shù)的分析擬合,最終提出二襯脫空判定標(biāo)準(zhǔn)。主要結(jié)論如下:(1)通過檢測(cè)試驗(yàn)所采集聲振信號(hào)的頻譜轉(zhuǎn)換,獲取響應(yīng)信號(hào)的功率譜密度函數(shù)。嚴(yán)重脫空信號(hào)的低頻成分(1000Hz左右)突出,密實(shí)信號(hào)的高頻成分(8000Hz左右)突出,輕微脫空信號(hào)表現(xiàn)為比重相近的低、高頻成分均勻分布,曲線為多峰值形態(tài);主峰值頻率、次峰值頻率及峰值下降率可為作為信號(hào)特征值,全面反映二襯結(jié)構(gòu)狀態(tài)。(2)將特征值與對(duì)應(yīng)二襯結(jié)構(gòu)狀態(tài)作為輸入輸出值進(jìn)行BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練,對(duì)網(wǎng)絡(luò)進(jìn)行測(cè)試,預(yù)測(cè)值的均方誤差較小(mse=6.475e-5),網(wǎng)絡(luò)具有較好的預(yù)測(cè)能力,可初步實(shí)現(xiàn)對(duì)二襯結(jié)構(gòu)狀態(tài)的定性識(shí)別判定。(3)針對(duì)單次振動(dòng)激勵(lì)下的響應(yīng)塊體,建立典型二襯結(jié)構(gòu)模型,進(jìn)行數(shù)值模態(tài)分析,得到密實(shí)塊體模型的前5階固有頻率,對(duì)于不同形態(tài)參數(shù)的脫空模型,主要結(jié)論包括:①完全脫空響應(yīng)塊體基頻為600-2000Hz,基頻值隨平均脫空深度增大呈三次多項(xiàng)式規(guī)律增大,擬合方程為y=A+B1X+B2X2+B3X3;淺部脫空塊體的基頻值整體低于較深處脫空塊體;平均深度相同時(shí),平緩脫空面較傾斜脫空面塊體有更大的基頻值,脫空面為水平時(shí)基頻達(dá)到最大值;響應(yīng)塊體前兩階固有頻率差值為650-1350Hz,頻率差值隨平均脫空深度的增大而增大,變化規(guī)律同基頻——平均脫空深度曲線類似。②局部脫空響應(yīng)塊體基頻為1400-4700Hz,基頻值隨脫空長(zhǎng)度的增大呈Logistic函數(shù)規(guī)律減小,擬合方程為y=A_2+(A_1-A_2)/[1+(x/x0)p];脫空長(zhǎng)度相同時(shí),起始脫空深度越大,基頻值越大;響應(yīng)塊體前兩階固有頻率差值為0-1400Hz,頻率差值隨脫空長(zhǎng)度的增大而增大,曲線在脫空長(zhǎng)度為30cm處存在節(jié)點(diǎn),節(jié)點(diǎn)之前曲線較陡,起始脫空深度越大,頻率差值越小;節(jié)點(diǎn)之后曲線較緩,起始脫空深度越大,頻率差值越大。③通過查閱對(duì)應(yīng)的判定曲線圖,可確定二襯結(jié)構(gòu)的精確形態(tài)參數(shù),實(shí)現(xiàn)定量脫空判定,并提出了快速求得脫空特征精確信息的作圖法。
[Abstract]:In order to solve the problems existing in the existing detection methods and reduce the detection cost, it is particularly important to carry out the inspection and prevent the tunnel second lining clearance seriously, which is a serious threat to the safe operation of the road. The acoustic vibration detection technique is studied. The response process of the lining under hammering excitation is generalized as the random free vibration problem of the local two-liner block, and the acoustic vibration detection test and numerical modal analysis are carried out. By analyzing and fitting the acoustic and vibration signals and modal parameters, the criteria for determining the void of the two linings are put forward. The main conclusions are as follows: 1) the spectrum conversion of the acoustic and vibration signals collected by the detection test. The power spectral density function of the response signal is obtained. The low frequency component of the serious empty signal is about 1000 Hz) and the high frequency component of the dense signal is about 8 000 Hz). The main peak frequency, the secondary peak frequency and the peak drop rate can be regarded as the signal eigenvalues, reflecting the two-lining structure state in an all-round way.) the eigenvalue and the corresponding two-liner structure state are taken as input and output values for BP neural network training, and the main peak frequency, the secondary peak frequency and the peak drop rate can be regarded as the signal eigenvalues. When the network is tested, the mean square error of the predicted value is smaller than 6.475e-5, and the network has better prediction ability. It can preliminarily realize the qualitative identification judgment of the state of the two-liner structure. (3) for the response block under the single vibration excitation, the typical two-lining structure model is established. The first five natural frequencies of the dense block model are obtained by numerical modal analysis, and the void model with different shape parameters is obtained. The main conclusions are as follows: the fundamental frequency of the complete void response block is 600-2000Hz, and the fundamental frequency increases with the increase of the average void depth by cubic polynomial law, and the fitting equation is YYAB1X B2X2B3X3, and the fundamental frequency of the shallow void block is lower than that of the deep void block as a whole. When the average depth is the same, the fundamental frequency of the flat surface is larger than that of the inclined surface block, and the fundamental frequency reaches the maximum when the void surface is horizontal, and the frequency difference increases with the increase of the average void depth, and the difference of the first two natural frequencies of the block is 650-1350Hz. The law of variation is similar to the curve of the basic frequency-average void depth. 2. The basic frequency of the local emptying response block is 1400-4700Hz. the fundamental frequency value decreases with the increase of the emptying length, and the fitting equation is YSP-A2A1-A1-A2T / [1 + x / xx0p]. The greater the initial emptying depth is, the greater the initial emptying depth is when the emptying length is the same. The larger the fundamental frequency is, the larger the frequency difference between the first two steps of the response block is 0-1400Hz, and the frequency difference increases with the increase of the empty length. There are nodes in the curve where the void length is 30cm, the curve before the node is steeper, the greater the initial void depth is, the smaller the frequency difference is. The curve behind the node is slower, the greater the initial void depth is, the greater the frequency difference is. 3. By consulting the corresponding judgment curve, the precise shape parameters of the two-lining structure can be determined, and the quantitative void determination can be realized. A mapping method is proposed to quickly obtain the accurate information of the void feature.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U455.91
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉宗輝;吳恒;周東;韋鴻耀;;頻譜反演法在探地雷達(dá)隧道襯砌檢測(cè)中的應(yīng)用研究[J];巖土工程學(xué)報(bào);2015年04期
2 王鋒;;某鐵路隧道襯砌空洞病害整治技術(shù)[J];施工技術(shù);2014年S1期
3 梁敏;;隧道二襯脫空原因分析及防治[J];鐵道建筑;2014年06期
4 周文軒;李菁;郭輝;;探地雷達(dá)在隧道襯砌無損檢測(cè)中的應(yīng)用[J];施工技術(shù);2014年11期
5 梁棟;謝蒙均;;隧道二次襯砌脫空成因及地質(zhì)雷達(dá)無損檢測(cè)簡(jiǎn)析[J];黑龍江交通科技;2014年01期
6 楊文平;張立興;;隧道二次襯砌背后脫空的防治[J];中國港灣建設(shè);2013年05期
7 張運(yùn)良;聶子云;李鳳翔;;襯砌背后脫空對(duì)隧道結(jié)構(gòu)影響三維數(shù)值分析[J];鄭州大學(xué)學(xué)報(bào)(工學(xué)版);2013年02期
8 朱海城;;地質(zhì)雷達(dá)檢測(cè)技術(shù)在寒冷地區(qū)客運(yùn)專線隧道工程中的應(yīng)用[J];鐵道建筑;2012年06期
9 楊小玉;;隧道二次襯砌與初期支護(hù)間脫空原因分析及處理[J];中國安全生產(chǎn)科學(xué)技術(shù);2012年02期
10 王立川;周東偉;吳劍;陽軍生;;鐵路隧道復(fù)合襯砌脫空的危害分析與防治[J];中國鐵道科學(xué);2011年05期
相關(guān)博士學(xué)位論文 前2條
1 舒志樂;隧道襯砌內(nèi)空洞探地雷達(dá)探測(cè)正反演研究[D];重慶大學(xué);2010年
2 吳豐收;混凝土探測(cè)中探地雷達(dá)方法技術(shù)應(yīng)用研究[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 曲榮懷;襯砌背后空洞對(duì)隧道圍巖壓力分布規(guī)律的影響研究[D];北京交通大學(xué);2014年
2 周強(qiáng);高速公路隧道襯砌背后空洞影響及安全性分析[D];重慶交通大學(xué);2013年
3 施鵬程;基于探地雷達(dá)的隧道質(zhì)量檢測(cè)[D];南昌大學(xué);2012年
4 楊瑩;基于時(shí)頻分析的道路脫空音頻檢測(cè)研究[D];長(zhǎng)安大學(xué);2012年
5 史春風(fēng);聲振法在混凝土路面脫空檢測(cè)中的應(yīng)用[D];中南大學(xué);2011年
6 楊進(jìn);隧道襯砌質(zhì)量評(píng)價(jià)與探地雷達(dá)無損檢測(cè)模型試驗(yàn)研究[D];長(zhǎng)沙理工大學(xué);2008年
7 萬捷;水泥混凝土路面板底脫空檢測(cè)及防治技術(shù)研究[D];長(zhǎng)安大學(xué);2007年
8 葉良應(yīng);地鐵隧道襯砌脫空和滲漏水病害雷達(dá)探測(cè)研究[D];汕頭大學(xué);2005年
,本文編號(hào):1565334
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1565334.html