預制RPC柱降低大跨PC剛構(gòu)橋跨中長期下?lián)闲治?/H1>
發(fā)布時間:2018-02-09 21:11
本文關鍵詞: 長期下?lián)?收縮徐變 RPC-NC復合截面 內(nèi)力重分布 出處:《湖南大學》2015年碩士論文 論文類型:學位論文
【摘要】:大跨PC剛構(gòu)橋長期下?lián)系膯栴}十分突出,同時它與開裂形成惡性循環(huán),對結(jié)構(gòu)的運營安全和耐久性構(gòu)成很大威脅。受壓混凝土收縮徐變是大跨剛構(gòu)橋長期下?lián)系淖钪饕?鑒于RPC(活性粉末混凝土)經(jīng)熱養(yǎng)護后強度高、收縮極小、徐變系數(shù)小的特點,提出在負彎矩區(qū)箱梁底板、跨中箱梁頂板中加入預制RPC柱形成局部RPC-NC(普通混凝土)復合截面的方案來控制剛構(gòu)橋長期下?lián)。本文首先通過試驗、理論、有限元分析探究了RPC-NC復合截面柱的應力重分布現(xiàn)象及其對復合截面柱后期變形的降低作用,同時分析了剪力鍵的受力性能,進而得到了復合截面RPC的合理面積比例。在此研究基礎上設計了全橋加入RPC柱的布置方案,建立了全普通混凝土、加預制RPC柱剛構(gòu)橋全橋有限元模型并進行對比分析。主要結(jié)論如下:(1)通過試驗、理論、有限元分析知,由于RPC和C50混凝土在收縮徐變性質(zhì)上的巨大差異復合截面將發(fā)生內(nèi)力重分布的現(xiàn)象,C50應力隨時間將逐漸減小,復合截面柱的后期變形、名義徐變系數(shù)也會隨之減小;RPC的徐變系數(shù)可以取為CEB-FIP(1990)模式下同條件C50混凝土的15%進行分析計算;布置剪力鍵鋼筋橫截面積為復合柱橫截面積的4%時,剪力鍵布置安全、有效;實橋應用中,布置RPC面積為復合截面總面積的40%比較合理、有效;(2)通過全橋有限元模型應力、變形、預應力損失的對比分析知,相對于全普通混凝土剛構(gòu)橋,加入預制RPC柱的剛構(gòu)橋十年收縮徐變所引起的豎向位移降低了54.5%,跨中長期下?lián)系玫矫黠@改善;中跨跨中梁底普通混凝土、0號塊梁頂普通混凝土壓應力略有增加,0號塊梁底普通混凝土、中跨跨中梁頂普通混凝土壓應力減小,中跨應力分布更加均勻;中跨底板后期束、負彎矩區(qū)頂板束由成橋后十年收縮徐變引起的預應力損失沒有明顯變化;(3)加入預制RPC柱后,剛構(gòu)橋跨中長期持續(xù)下?lián)蠝p小的主要原因是:剛構(gòu)橋負彎矩區(qū)箱梁底板、跨中附近箱梁頂板形成了局部的RPC-NC復合截面,局部復合截面發(fā)生應力重分布導致普通混凝土壓應力減小、后期名義徐變應變減小,進而減小了剛構(gòu)橋負彎矩區(qū)的結(jié)構(gòu)轉(zhuǎn)角、跨中附近的豎向位移;(4)通過參數(shù)分析建議在負彎矩區(qū)0~8號塊的箱梁底板,24~26號塊、跨中合攏段的箱梁頂板布置預制RPC柱。綜上可知加入適當比例的預制RPC柱,可使剛構(gòu)橋成橋后的長期下?lián)辖档?0%左右,明顯改善剛構(gòu)橋的長期下?lián)蠁栴},對于實際工程有一定的參考價值。
[Abstract]:The problem of long term deflection of long span PC rigid frame bridge is very prominent. At the same time, it forms a vicious circle with cracking, which poses a great threat to the operation safety and durability of the structure. The shrinkage and creep of compressed concrete is the main cause of long term deflection of long span rigid frame bridge. In view of the high strength, minimal shrinkage and low creep coefficient of RPC (reactive Powder concrete) after thermal curing, the bottom plate of box girder in negative bending moment region is put forward. The method of forming local RPC-NC (ordinary concrete) composite section by adding prefabricated RPC columns to the roof of span box girder is used to control the long-term deflection of rigid frame bridge. The stress redistribution phenomenon of RPC-NC composite section column and its effect on reducing the late deformation of composite section column are studied by finite element analysis, and the mechanical properties of the shear bond are analyzed at the same time. Then the reasonable area ratio of composite section RPC is obtained. On the basis of this research, the layout scheme of adding RPC column to the whole bridge is designed, and the whole ordinary concrete is established. The finite element model of the whole bridge with prefabricated RPC column rigid frame bridge is compared and analyzed. The main conclusions are as follows: (1) through experiment, theory and finite element analysis, Due to the great difference between the shrinkage and creep properties of RPC and C50 concrete, the internal force redistribution will occur in the composite section. The C50 stress will gradually decrease with time, and the post-deformation of the composite cross-section column will occur. The creep coefficient of RPCs can be taken as 15% of C50 concrete under the same condition under CEB-FIP1990) mode, and the shear bond arrangement is safe and effective when the cross section area of shear key steel bar is 4 of the cross section area of composite column. In the application of real bridge, it is reasonable to arrange RPC area to be 40% of the total area of composite section. (2) through the comparative analysis of the stress, deformation and prestress loss of the finite element model of the whole bridge, it is found that compared with the full ordinary concrete rigid frame bridge, The vertical displacement caused by 10 years shrinkage and creep of rigid frame bridge with prefabricated RPC column is reduced by 54.5 and the mid- and long-term deflection of span is improved obviously. The compressive stress of ordinary concrete at the top of No. 0 block beam increases slightly, the compressive stress of ordinary concrete at the top of middle span beam decreases and the stress distribution of middle span is more uniform. There is no obvious change of prestress loss caused by shrinkage and creep of roof beam in negative moment region after 10 years of bridge completion. (3) after adding prefabricated RPC column, the main reason of long-lasting deflection reduction of rigid frame bridge span is: the bottom plate of box girder in negative moment zone of rigid frame bridge, The local RPC-NC composite section is formed in the roof of the box girder near the middle span. The stress redistribution of the local composite section results in the reduction of compressive stress of ordinary concrete and the decrease of nominal creep strain in the later stage, thus reducing the structural rotation angle of the negative moment zone of the rigid frame bridge. Through parameter analysis, it is suggested that prefabricated RPC columns should be arranged on the bottom plate of box girder in block 0 ~ 8 of negative bending moment, and on the roof of box girder in the closing section of span. In summary, the appropriate proportion of prefabricated RPC columns should be added. The long-term deflection of rigid frame bridge can be reduced by 50% or so, and the long-term deflection problem of rigid frame bridge can be improved obviously, which has certain reference value for practical engineering.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U441;U448.23
【參考文獻】
相關期刊論文 前10條
1 劉揚;陳海鋒;李宇鵬;張旭輝;;基于ANSYS的橋梁結(jié)構(gòu)收縮徐變效應仿真計算[J];交通科學與工程;2013年03期
2 張陽;張楠;姚學昌;;預防大跨PC連續(xù)剛構(gòu)橋開裂和下?lián)霞夹g[J];沈陽工業(yè)大學學報;2013年05期
3 邵旭東;詹豪;雷薇;張哲;;超大跨徑單向預應力UHPC連續(xù)箱梁橋概念設計與初步實驗[J];土木工程學報;2013年08期
4 呂志濤;潘鉆峰;;大跨徑預應力混凝土箱梁橋設計中的幾個問題[J];土木工程學報;2010年01期
5 王飛;方志;;大跨活性粉末混凝土連續(xù)剛構(gòu)橋的性能研究[J];湖南大學學報(自然科學版);2009年04期
6 曹農(nóng)江;趙峰;龔書林;張陽;;橋梁上部結(jié)構(gòu)的加固維修方法綜述[J];公路工程;2007年05期
7 馬潤平;衛(wèi)軍;高宗余;;大跨預應力混凝土梁式橋后期下?lián)显蚍治鯷J];鐵道工程學報;2007年05期
8 謝峻;王國亮;鄭曉華;;大跨徑預應力混凝土箱梁橋長期下?lián)蠁栴}的研究現(xiàn)狀[J];公路交通科技;2007年01期
9 樓莊鴻;;大跨徑梁式橋的主要病害[J];公路交通科技;2006年04期
10 顧建中,劉西拉,陳衛(wèi)峰;考慮徐變的鋼管混凝土拱橋結(jié)構(gòu)分析[J];上海交通大學學報;2001年10期
相關博士學位論文 前2條
1 薛興偉;大跨PC梁橋跨中下?lián)霞傲芽p控制研究[D];暨南大學;2013年
2 盧志芳;考慮時變性和不確定性的混凝土橋梁收縮徐變及預應力損失計算方法[D];武漢理工大學;2011年
相關碩士學位論文 前10條
1 王亞坤;大跨度連續(xù)剛構(gòu)橋跨中下?lián)蠁栴}研究[D];長安大學;2013年
2 張康;高墩大跨連續(xù)剛構(gòu)橋長期變形研究[D];重慶大學;2013年
3 李世偉;收縮徐變效應對大跨度連續(xù)剛構(gòu)橋長期下?lián)嫌绊懷芯縖D];西南交通大學;2013年
4 張楠;預防大跨PC梁橋開裂和下?lián)系拇胧┭芯縖D];湖南大學;2012年
5 冷文華;預應力鋼殼混凝土橋塔受力分析[D];湖南大學;2012年
6 翁運新;基于ANSYS二次開發(fā)的PC箱梁徐變效應分析[D];中南大學;2011年
7 李斌;二次張拉鋼絞線技術應用于箱梁腹板豎向預應力的研究[D];湖南大學;2009年
8 曹颯颯;大跨徑鋼管混凝土拱橋仿真計算與控制[D];長安大學;2008年
9 許長城;體外預應力技術在連續(xù)剛構(gòu)橋中的應用研究[D];重慶交通大學;2008年
10 蘇礪鋒;混凝土徐變計算及橋梁施工過程仿真分析[D];華中科技大學;2004年
,
本文編號:1498869
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1498869.html
本文關鍵詞: 長期下?lián)?收縮徐變 RPC-NC復合截面 內(nèi)力重分布 出處:《湖南大學》2015年碩士論文 論文類型:學位論文
【摘要】:大跨PC剛構(gòu)橋長期下?lián)系膯栴}十分突出,同時它與開裂形成惡性循環(huán),對結(jié)構(gòu)的運營安全和耐久性構(gòu)成很大威脅。受壓混凝土收縮徐變是大跨剛構(gòu)橋長期下?lián)系淖钪饕?鑒于RPC(活性粉末混凝土)經(jīng)熱養(yǎng)護后強度高、收縮極小、徐變系數(shù)小的特點,提出在負彎矩區(qū)箱梁底板、跨中箱梁頂板中加入預制RPC柱形成局部RPC-NC(普通混凝土)復合截面的方案來控制剛構(gòu)橋長期下?lián)。本文首先通過試驗、理論、有限元分析探究了RPC-NC復合截面柱的應力重分布現(xiàn)象及其對復合截面柱后期變形的降低作用,同時分析了剪力鍵的受力性能,進而得到了復合截面RPC的合理面積比例。在此研究基礎上設計了全橋加入RPC柱的布置方案,建立了全普通混凝土、加預制RPC柱剛構(gòu)橋全橋有限元模型并進行對比分析。主要結(jié)論如下:(1)通過試驗、理論、有限元分析知,由于RPC和C50混凝土在收縮徐變性質(zhì)上的巨大差異復合截面將發(fā)生內(nèi)力重分布的現(xiàn)象,C50應力隨時間將逐漸減小,復合截面柱的后期變形、名義徐變系數(shù)也會隨之減小;RPC的徐變系數(shù)可以取為CEB-FIP(1990)模式下同條件C50混凝土的15%進行分析計算;布置剪力鍵鋼筋橫截面積為復合柱橫截面積的4%時,剪力鍵布置安全、有效;實橋應用中,布置RPC面積為復合截面總面積的40%比較合理、有效;(2)通過全橋有限元模型應力、變形、預應力損失的對比分析知,相對于全普通混凝土剛構(gòu)橋,加入預制RPC柱的剛構(gòu)橋十年收縮徐變所引起的豎向位移降低了54.5%,跨中長期下?lián)系玫矫黠@改善;中跨跨中梁底普通混凝土、0號塊梁頂普通混凝土壓應力略有增加,0號塊梁底普通混凝土、中跨跨中梁頂普通混凝土壓應力減小,中跨應力分布更加均勻;中跨底板后期束、負彎矩區(qū)頂板束由成橋后十年收縮徐變引起的預應力損失沒有明顯變化;(3)加入預制RPC柱后,剛構(gòu)橋跨中長期持續(xù)下?lián)蠝p小的主要原因是:剛構(gòu)橋負彎矩區(qū)箱梁底板、跨中附近箱梁頂板形成了局部的RPC-NC復合截面,局部復合截面發(fā)生應力重分布導致普通混凝土壓應力減小、后期名義徐變應變減小,進而減小了剛構(gòu)橋負彎矩區(qū)的結(jié)構(gòu)轉(zhuǎn)角、跨中附近的豎向位移;(4)通過參數(shù)分析建議在負彎矩區(qū)0~8號塊的箱梁底板,24~26號塊、跨中合攏段的箱梁頂板布置預制RPC柱。綜上可知加入適當比例的預制RPC柱,可使剛構(gòu)橋成橋后的長期下?lián)辖档?0%左右,明顯改善剛構(gòu)橋的長期下?lián)蠁栴},對于實際工程有一定的參考價值。
[Abstract]:The problem of long term deflection of long span PC rigid frame bridge is very prominent. At the same time, it forms a vicious circle with cracking, which poses a great threat to the operation safety and durability of the structure. The shrinkage and creep of compressed concrete is the main cause of long term deflection of long span rigid frame bridge. In view of the high strength, minimal shrinkage and low creep coefficient of RPC (reactive Powder concrete) after thermal curing, the bottom plate of box girder in negative bending moment region is put forward. The method of forming local RPC-NC (ordinary concrete) composite section by adding prefabricated RPC columns to the roof of span box girder is used to control the long-term deflection of rigid frame bridge. The stress redistribution phenomenon of RPC-NC composite section column and its effect on reducing the late deformation of composite section column are studied by finite element analysis, and the mechanical properties of the shear bond are analyzed at the same time. Then the reasonable area ratio of composite section RPC is obtained. On the basis of this research, the layout scheme of adding RPC column to the whole bridge is designed, and the whole ordinary concrete is established. The finite element model of the whole bridge with prefabricated RPC column rigid frame bridge is compared and analyzed. The main conclusions are as follows: (1) through experiment, theory and finite element analysis, Due to the great difference between the shrinkage and creep properties of RPC and C50 concrete, the internal force redistribution will occur in the composite section. The C50 stress will gradually decrease with time, and the post-deformation of the composite cross-section column will occur. The creep coefficient of RPCs can be taken as 15% of C50 concrete under the same condition under CEB-FIP1990) mode, and the shear bond arrangement is safe and effective when the cross section area of shear key steel bar is 4 of the cross section area of composite column. In the application of real bridge, it is reasonable to arrange RPC area to be 40% of the total area of composite section. (2) through the comparative analysis of the stress, deformation and prestress loss of the finite element model of the whole bridge, it is found that compared with the full ordinary concrete rigid frame bridge, The vertical displacement caused by 10 years shrinkage and creep of rigid frame bridge with prefabricated RPC column is reduced by 54.5 and the mid- and long-term deflection of span is improved obviously. The compressive stress of ordinary concrete at the top of No. 0 block beam increases slightly, the compressive stress of ordinary concrete at the top of middle span beam decreases and the stress distribution of middle span is more uniform. There is no obvious change of prestress loss caused by shrinkage and creep of roof beam in negative moment region after 10 years of bridge completion. (3) after adding prefabricated RPC column, the main reason of long-lasting deflection reduction of rigid frame bridge span is: the bottom plate of box girder in negative moment zone of rigid frame bridge, The local RPC-NC composite section is formed in the roof of the box girder near the middle span. The stress redistribution of the local composite section results in the reduction of compressive stress of ordinary concrete and the decrease of nominal creep strain in the later stage, thus reducing the structural rotation angle of the negative moment zone of the rigid frame bridge. Through parameter analysis, it is suggested that prefabricated RPC columns should be arranged on the bottom plate of box girder in block 0 ~ 8 of negative bending moment, and on the roof of box girder in the closing section of span. In summary, the appropriate proportion of prefabricated RPC columns should be added. The long-term deflection of rigid frame bridge can be reduced by 50% or so, and the long-term deflection problem of rigid frame bridge can be improved obviously, which has certain reference value for practical engineering.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U441;U448.23
【參考文獻】
相關期刊論文 前10條
1 劉揚;陳海鋒;李宇鵬;張旭輝;;基于ANSYS的橋梁結(jié)構(gòu)收縮徐變效應仿真計算[J];交通科學與工程;2013年03期
2 張陽;張楠;姚學昌;;預防大跨PC連續(xù)剛構(gòu)橋開裂和下?lián)霞夹g[J];沈陽工業(yè)大學學報;2013年05期
3 邵旭東;詹豪;雷薇;張哲;;超大跨徑單向預應力UHPC連續(xù)箱梁橋概念設計與初步實驗[J];土木工程學報;2013年08期
4 呂志濤;潘鉆峰;;大跨徑預應力混凝土箱梁橋設計中的幾個問題[J];土木工程學報;2010年01期
5 王飛;方志;;大跨活性粉末混凝土連續(xù)剛構(gòu)橋的性能研究[J];湖南大學學報(自然科學版);2009年04期
6 曹農(nóng)江;趙峰;龔書林;張陽;;橋梁上部結(jié)構(gòu)的加固維修方法綜述[J];公路工程;2007年05期
7 馬潤平;衛(wèi)軍;高宗余;;大跨預應力混凝土梁式橋后期下?lián)显蚍治鯷J];鐵道工程學報;2007年05期
8 謝峻;王國亮;鄭曉華;;大跨徑預應力混凝土箱梁橋長期下?lián)蠁栴}的研究現(xiàn)狀[J];公路交通科技;2007年01期
9 樓莊鴻;;大跨徑梁式橋的主要病害[J];公路交通科技;2006年04期
10 顧建中,劉西拉,陳衛(wèi)峰;考慮徐變的鋼管混凝土拱橋結(jié)構(gòu)分析[J];上海交通大學學報;2001年10期
相關博士學位論文 前2條
1 薛興偉;大跨PC梁橋跨中下?lián)霞傲芽p控制研究[D];暨南大學;2013年
2 盧志芳;考慮時變性和不確定性的混凝土橋梁收縮徐變及預應力損失計算方法[D];武漢理工大學;2011年
相關碩士學位論文 前10條
1 王亞坤;大跨度連續(xù)剛構(gòu)橋跨中下?lián)蠁栴}研究[D];長安大學;2013年
2 張康;高墩大跨連續(xù)剛構(gòu)橋長期變形研究[D];重慶大學;2013年
3 李世偉;收縮徐變效應對大跨度連續(xù)剛構(gòu)橋長期下?lián)嫌绊懷芯縖D];西南交通大學;2013年
4 張楠;預防大跨PC梁橋開裂和下?lián)系拇胧┭芯縖D];湖南大學;2012年
5 冷文華;預應力鋼殼混凝土橋塔受力分析[D];湖南大學;2012年
6 翁運新;基于ANSYS二次開發(fā)的PC箱梁徐變效應分析[D];中南大學;2011年
7 李斌;二次張拉鋼絞線技術應用于箱梁腹板豎向預應力的研究[D];湖南大學;2009年
8 曹颯颯;大跨徑鋼管混凝土拱橋仿真計算與控制[D];長安大學;2008年
9 許長城;體外預應力技術在連續(xù)剛構(gòu)橋中的應用研究[D];重慶交通大學;2008年
10 蘇礪鋒;混凝土徐變計算及橋梁施工過程仿真分析[D];華中科技大學;2004年
,本文編號:1498869
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1498869.html