基于支持向量機的隧道圍巖位移變形預測分析研究
發(fā)布時間:2018-02-04 06:47
本文關鍵詞: 圍巖位移 時間序列預測 支持向量機 小波核函數 出處:《重慶交通大學》2015年碩士論文 論文類型:學位論文
【摘要】:新奧法是隧道工程建設中廣泛使用的方法。監(jiān)控量測是新奧法中的重要組成部分,量測的數據能夠體現(xiàn)隧道圍巖的變形狀態(tài),依托監(jiān)測數據對隧道圍巖的變形進行預測能夠很好的為隧道的設計和施工提供參考價值,現(xiàn)今的位移反演分析能夠對隧道進行一定范圍內的預測,但反演分析主要依托在沉降穩(wěn)定值的反推與鄰近界面的材料特性相似性上,有一定的滯后性不能滿足工程建設中時間投資上的要求。利用量測數據的自規(guī)律性對位移變形進行預測的研究還較少。針對位移變化的時間序列預測上,本文依托統(tǒng)計學習理論中的支持向量機開展研究,主要工作有:①介紹了支持向量機的理論基礎與具體的推導過程,利用陽宗隧道的位移監(jiān)測數據實例分析了不同超參數組合下的支持向量機性能,提出了參數選擇的方法與依據。對比了多項式回歸預測與遞歸最小二乘法預測的差異,并用MATLAB編程依托推導的原理進行了計算分析,結果表明支持向量機具有較好的穩(wěn)定性。②以京珠高速公路溫泉隧道位移非線性時間序列預測為例子,對比了不同特征表現(xiàn)形式下的RBF核支持向量機預測性能。分析結果表明,采用累加和的位移表現(xiàn)形式能有效提升RBF核函數下的支持向量機預測性能,對比了傳統(tǒng)歸一化方法與對數空間映射的差異性,分析結果表明對于同一個映射空間下的子集選擇RBF核函數不敏感。③針對RBF核函數優(yōu)良的特性,通過小波理論與核函數的特性構造出了Morlet小波核函數,并經過溪洛渡電站隧道的監(jiān)測數據的分析驗證,Morlet小波核函數在監(jiān)測頻率不同的位移變形預測分析上,有較好的預測性能。
[Abstract]:New Olympic method is widely used in tunnel construction. Monitoring and measurement is an important part of the method. The measured data can reflect the deformation state of tunnel surrounding rock. Relying on monitoring data to predict the deformation of tunnel surrounding rock can provide a good reference value for the design and construction of the tunnel. Now the displacement inversion analysis can predict the tunnel in a certain range. But the inversion analysis is mainly based on the similarity of the material properties between the stability value of settlement and the material characteristics of the adjacent interface. Some lag can not meet the requirements of time investment in engineering construction. There is little research on the prediction of displacement deformation by using the self-regularity of measurement data. Based on the support vector machine (SVM) in statistical learning theory, the main work of this paper is to introduce the theoretical basis and the specific derivation process of support vector machine (SVM). Based on the displacement monitoring data of Yangzong tunnel, the performance of support vector machine (SVM) under different super-parameter combinations is analyzed. The method and basis of parameter selection are put forward, the difference between polynomial regression prediction and recursive least square prediction is compared, and the calculation and analysis are carried out based on the principle of MATLAB programming. The results show that the support vector machine has good stability. 2. The prediction of nonlinear time series of displacement in hot spring tunnel of Jingzhou-Zhuhai Expressway is taken as an example. The prediction performance of RBF kernel support vector machine with different feature forms is compared. The analysis results show that the prediction performance of support vector machine under RBF kernel function can be improved effectively by using the displacement representation of cumulative sum. The difference between the traditional normalization method and the logarithmic space mapping is compared. The results show that the RBF kernel function is insensitive to the RBF kernel function for the subset of the same mapping space. The Morlet wavelet kernel function is constructed by wavelet theory and kernel function, and verified by the monitoring data of Xiluodu Hydropower Station. Morlet wavelet kernel function has good prediction performance in monitoring displacement and deformation prediction with different frequencies.
【學位授予單位】:重慶交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U456.31
【參考文獻】
相關期刊論文 前2條
1 卜慶為;;基于ARMA時序分析模型的巷道圍巖變形預測[J];采礦技術;2014年01期
2 尹光志;岳順;鐘燾;李德泉;;基于ARMA模型的隧道位移時間序列分析[J];巖土力學;2009年09期
相關博士學位論文 前7條
1 董輝;基于支持向量機的巖土非線性變形行為預測研究[D];中南大學;2007年
2 王吉亮;基于人工智能與三維數值模擬的烏竹嶺隧道圍巖穩(wěn)定性系統(tǒng)研究[D];吉林大學;2009年
3 李俊奎;時間序列相似性問題研究[D];華中科技大學;2008年
4 聶淑媛;時間序列分析的早期發(fā)展[D];西北大學;2012年
5 張靜思;高維特征篩選和時間序列下的模型選擇[D];山東大學;2013年
6 賈朝龍;鐵路軌道不平順數據挖掘及其時間序列趨勢預測研究[D];北京交通大學;2013年
7 何曉旭;時間序列數據挖掘若干關鍵問題研究[D];中國科學技術大學;2014年
,本文編號:1489623
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1489623.html