城市主干線協(xié)調控制子區(qū)劃分技術研究
本文關鍵詞: 交通工程 控制子區(qū)劃分 信號協(xié)調控制 遺傳算法 CORSIM微觀仿真 出處:《大連理工大學》2016年碩士論文 論文類型:學位論文
【摘要】:隨著我國經濟日益發(fā)展,人民生活水平不斷提高,汽車保有量急劇增長,交通系統(tǒng)的供需矛盾日益凸現(xiàn),交通擁堵成為我國社會面臨的最嚴峻難題之一。優(yōu)化城市交叉口的信號控制是解決交通擁堵行之有效的方法之一。干線協(xié)調控制對干線上的信號燈組同時進行配時優(yōu)化,進一步提高了信號控制的效率,因此被廣泛應用于城市交通控制實踐中。然而現(xiàn)有的線控信號燈協(xié)調配時方法多局限于有限的道路規(guī)模,如5-6個信號交叉口。隨著城市規(guī)模的不斷擴大,很多城市的主干線不再局限于這個規(guī)模,而是更多,如15-20個交叉口。如果直接對所有的信號燈一齊進行協(xié)調配時,所得的雙向綠波帶寬度也許會很小,有時甚至得不到雙向綠波。因此,有必要先對干線進行合理的分段,然后對每個分段進行協(xié)調配時優(yōu)化,以提高城市干線總體的協(xié)調控制效果,即所謂的子區(qū)劃分技術。傳統(tǒng)的干線協(xié)調控制子區(qū)劃分技術或是基于高度的經驗建立子區(qū)劃分指標,或是采用啟發(fā)式算法搜索可行的劃分方案,因此難以得到理想的協(xié)調控制子區(qū)劃分方案,無法確保子區(qū)良好的協(xié)調控制效果。本文基于經典的MAXBAND模型,考慮子區(qū)控制效率公共信號周期以及子區(qū)內信號燈的連續(xù)性,通過引入若干組二進制變量建立了兩個協(xié)調控制子區(qū)劃分模型—最大化綠波寬度和最小化各協(xié)調控制子區(qū)直行車輛車均綠波時間差異。采用遺傳算法求解模型,并利用CORSIM仿真對比分析三種流量場景下由本文模型和Synchro所優(yōu)化的方案的控制效果,以驗證模型的可行性與有效性。優(yōu)化與仿真結果表明:一般而言,隨著子區(qū)劃分數(shù)量的增加,干線綠波時間隨之增加,控制子區(qū)內直行車輛的平均停車率也會相應地降低,但隨之增加的非協(xié)調路段會更頻繁的打斷行駛車隊,從而無法保證直行車輛的平均停車率在干線層面上表現(xiàn)出上述特點;雖然本文所建立的模型具有不同的目標函數(shù),但是所優(yōu)化的方案具有基本類似的控制效果,且相比于Synchro優(yōu)化的方案,本文模型優(yōu)化方案能夠顯著提高平均子區(qū)帶寬有效率,同時也具有更優(yōu)的車均延誤與停車率等運行指標。本文建立的模型是可行且有效的,能夠為理論研究與實際工程運用提供理論基礎與參考價值,豐富了子區(qū)劃分技術的研究思路與方法。
[Abstract]:With the development of our country's economy, people's living standard is improving, the quantity of automobile is increasing rapidly, and the contradiction between supply and demand of transportation system is becoming more and more obvious. Traffic congestion has become one of the most severe problems facing our society. Optimizing the signal control of urban intersections is one of the effective methods to solve traffic jams. Time optimization. It improves the efficiency of signal control, so it is widely used in urban traffic control practice. However, most of the existing coordinated timing methods of line-controlled signal lights are limited to a limited road scale. For example, 5-6 signalized intersections. With the continuous expansion of the city size, the main lines of many cities are no longer limited to this scale, but more. For example, 15-20 intersections. If all the signals are coordinated directly, the width of the bidirectional green band may be very small, sometimes not even bidirectional green wave. It is necessary to segment the trunk line reasonably and then optimize each segment in order to improve the overall coordination and control effect of urban trunk line. The traditional sub-area partition technique of coordinated control of trunk line is either based on height experience to establish sub-area division index or to use heuristic algorithm to search feasible partition scheme. Therefore, it is difficult to obtain an ideal subarea partition scheme of coordinated control, and can not ensure a good coordinated control effect. This paper is based on the classical MAXBAND model. The common signal period of sub-area control efficiency and the continuity of the sub-area signal lamp are considered. By introducing a number of binary variables, two models of division of coordinated control subareas are established, i.e., maximizing the width of green waves and minimizing the difference of green wave time between vehicles in each coordinated control area. The genetic algorithm is used to solve the model. CORSIM simulation is used to compare and analyze the control effect of the three flow scenarios optimized by the model and Synchro. In order to verify the feasibility and effectiveness of the model, the optimization and simulation results show that: generally speaking, with the increase of the number of sub-areas, the green wave time of trunk lines increases. The average parking rate of direct vehicles in the control sub-area will also decrease correspondingly, but the increase of uncoordinated sections will interrupt the motorcade more frequently. Thus, it is impossible to ensure that the average parking rate of the direct vehicle shows the above characteristics on the trunk line level. Although the model established in this paper has different objective functions, the optimized scheme has a similar control effect, and compared with the Synchro optimization scheme. The model optimization scheme in this paper can significantly improve the efficiency of the average sub-area bandwidth, but also have better vehicle average delay and parking rate, etc. The model established in this paper is feasible and effective. It can provide theoretical basis and reference value for theoretical research and practical engineering application, and enrich the research ideas and methods of sub-area division technology.
【學位授予單位】:大連理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:U491.54
【相似文獻】
相關期刊論文 前10條
1 吳義虎;李狄;喻偉;喻丹;;基于快速疏散控制的城市道路偶發(fā)性交通擁堵區(qū)域動態(tài)界定及控制子區(qū)劃分[J];長沙理工大學學報;2014年02期
2 邱曉麗;;控制子站穩(wěn)控裝置的功能及運行維護的探討[J];硅谷;2012年17期
3 盧凱;徐建閩;李軼舜;;基于關聯(lián)度分析的協(xié)調控制子區(qū)劃分方法[J];華南理工大學學報(自然科學版);2009年07期
4 楊慶芳;陳林;;交通控制子區(qū)動態(tài)劃分方法[J];吉林大學學報(工學版);2006年S2期
5 首艷芳;徐建閩;;基于群體動力學的協(xié)調控制子區(qū)劃分[J];華南理工大學學報(自然科學版);2013年04期
6 尚德申;車廣俠;楊敏;;關于控制子區(qū)與VMS結合的研究[J];交通標準化;2008年13期
7 尚德申;車廣俠;楊敏;;關于控制子區(qū)與VMS結合的研究[J];交通標準化;2008年14期
8 王力;陳智;劉小明;李正熙;;基于社區(qū)發(fā)現(xiàn)的交通控制子區(qū)優(yōu)化方法研究[J];交通運輸系統(tǒng)工程與信息;2012年06期
9 段后利;李志恒;張毅;胡堅明;;交通控制子區(qū)動態(tài)劃分模型[J];吉林大學學報(工學版);2009年S2期
10 ;[J];;年期
相關會議論文 前3條
1 景佳;吳宜燦;李國麗;林輝;吳愛東;;MLC靜態(tài)控制子野劃分算法的比較研究[A];第十三屆全國核物理大會暨第八屆會員代表大會論文摘要集[C];2007年
2 李慧兵;楊兆升;楊曉光;;基于距離+周期原則的控制子區(qū)劃分研究[A];第二十九屆中國控制會議論文集[C];2010年
3 李剛奇;趙婭麗;;基于宏觀交通理論的交通控制子區(qū)劃分方法[A];第七屆中國智能交通年會優(yōu)秀論文集——智能交通技術[C];2012年
相關碩士學位論文 前3條
1 馬寒月;基于宏觀基本圖的路網控制子區(qū)劃分方法研究[D];合肥工業(yè)大學;2016年
2 唐小軍;城市主干線協(xié)調控制子區(qū)劃分技術研究[D];大連理工大學;2016年
3 陳曉明;交通控制子區(qū)動態(tài)劃分指標研究[D];吉林大學;2007年
,本文編號:1443940
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1443940.html