等離激元紅外吸收器及表面增強(qiáng)紅外吸收光譜的研究
[Abstract]:Due to the ability of isoionized exciton nanostructures to regulate the subwavelength of light, isoexciton has received extensive attention in the past two decades. Surface isolator is a coupling mode of electromagnetic field and free electron localized on metal surface, which occurs at the interface between metal and medium. By using the equal exciton mode, the conduction, focusing and enhancement of the light field can be realized at the nanometer scale, so it has been widely used in the field of micro-nano optical devices and sensors. At the same time, the microstructure of metal surface can affect the properties of isobaric oscillations. In the past two decades, how to realize the ideal nano-optical properties through the design and processing of metal nanostructures, and how to realize the control of light at the nanometer scale have been paid more and more attention. In recent years, researchers have done a lot of research on isoexciton nanostructures and energy absorption processes. The infrared absorber based on isobaric exciton, especially in near infrared and middle infrared, has attracted great interest because of its wide application in biosensor, thermal imaging and medical diagnosis. In the past few years, a large number of nanostructures have been applied to the design of isolator absorbers, such as grating structure, nanoparticles and metal-dielectric-metal structures. However, most of these structures have only one equal exciton resonance peak and lower absorption efficiency (50%). Therefore, in this paper, we design an isolator ultra-thin absorber with multiple resonance absorption peaks, and try to use this absorber to study the surface enhanced infrared absorption spectra of molecules. The contents and results of this paper are as follows: (1) an ultra-thin infrared absorber based on equal exciter nanoresonator array is designed, which makes use of the extremely high local electromagnetic field enhancement characteristics of the resonator to achieve the perfect absorption of incident light. The finite-difference time-domain method is used to simulate the nanoresonator array. It is found that the absorption peak of the absorber shifts red with the increase of the cavity length. In order to obtain several continuously changing absorption peaks, we design an absorber composed of 15 isoionized exciter nanoresonator arrays. (2) by using electron beam exposure technology, we successfully fabricated the isobaric absorber, and deeply studied the electron beam exposure process, including exposure, development, coating, peeling and so on. In the process of preparation, we overcome the proximity effect in exposure and the problem of peeling failure. (3) the infrared absorption spectrum of the sample was obtained by Fourier transform infrared spectrometer. The results show that the isoexciton infrared absorber has 15 continuously varying absorption peaks, which is the same as that of my simulation. Through the data fitting of the least square method, we find the linear relationship equation between the position of the absorption peak and the length of the resonator, which is of great significance for the design of the absorber at a specific wavelength. (4) We use the strong electromagnetic field enhancement characteristics of the designed isoexciter infrared absorber to study the surface enhanced infrared absorption spectrum of allyl mercaptan molecules. Because there are few modified sulfhydryl molecules, there is no signal of enhanced absorption, but we can continue to study the phenomenon of surface enhanced infrared absorption by improving the absorptivity of the absorber and replacing the modified molecules in the future. Our work in this field lays a foundation for further study of surface enhanced infrared absorption and surface enhanced Raman scattering.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙一梅;;介紹兩種吸收器[J];醫(yī)藥農(nóng)藥工業(yè)設(shè)計(jì);1974年03期
2 С.Γ.Сухотееъ;顧蘭英;;提取己內(nèi)酰胺試樣的離心鼓泡吸收器[J];國外紡織技術(shù)(化纖、染整、環(huán)境保護(hù)分冊);1990年01期
3 王惠中;車間用屏障式噪聲吸收器[J];上海紡織科技動態(tài);1979年06期
4 宋志剛,王兆年,劉美田,閔慶田;內(nèi)循環(huán)冷卻吸收器的應(yīng)用[J];山東化工;1999年04期
5 王俊峰;張文效;;濕式氧化法脫硫工藝中吸收器的開發(fā)方向[J];山西化工;2012年03期
6 周光輝;對國產(chǎn)溴化鋰吸收式制冷機(jī)吸收器性能改進(jìn)分析[J];鄭州紡織工學(xué)院學(xué)報;1991年03期
7 A.Chakma,連洪江,李慶;用于小規(guī)模偏遠(yuǎn)礦區(qū)氣處理的小型高性能吸收器[J];國外油田工程;1999年02期
8 ;沙伯新材料成現(xiàn)代能量吸收器首選[J];化工中間體;2009年01期
9 何思淵,臧曉云,何德坪;輕質(zhì)能量吸收器[J];中國科學(xué)(B輯 化學(xué));2005年04期
10 Б.Ф.Ормонт ,В.И.Смирнова ,章元濟(jì);定量分析用的氣體吸收器[J];化學(xué)世界;1955年09期
相關(guān)會議論文 前1條
1 蔡志敏;王寒棟;沈炳耘;;絕熱噴霧吸收器在擴(kuò)散吸收制冷中的應(yīng)用分析[A];第五屆全國制冷空調(diào)新技術(shù)研討會論文集[C];2008年
相關(guān)博士學(xué)位論文 前3條
1 馮睿;紅外波段周期微結(jié)構(gòu)近完美吸收特性研究[D];哈爾濱工業(yè)大學(xué);2015年
2 陳飛;線聚焦腔體聚光系統(tǒng)光學(xué)特性及集熱性能研究[D];云南師范大學(xué);2015年
3 曹仲文;側(cè)壁噴液的旋流吸收器內(nèi)吸收過程的研究[D];江南大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 洪永瑞;槽式太陽能腔體吸收器蒸汽發(fā)生系統(tǒng)特性研究[D];云南師范大學(xué);2015年
2 劉俊修;等離激元紅外吸收器及表面增強(qiáng)紅外吸收光譜的研究[D];南京大學(xué);2016年
3 李清;太陽能承壓式空腔熱能吸收器數(shù)值模擬研究[D];廣西大學(xué);2011年
4 張小青;旋轉(zhuǎn)床吸收器性能分析及優(yōu)化設(shè)計(jì)研究[D];哈爾濱工程大學(xué);2012年
5 王書中;直燃機(jī)吸收器部件仿真與可視化計(jì)算[D];天津大學(xué);2004年
6 夏利江;吸收式燃?xì)饪照{(diào)系統(tǒng)熱力學(xué)分析及吸收器優(yōu)化設(shè)計(jì)[D];江蘇大學(xué);2006年
7 劉駿;開式絕熱吸收系統(tǒng)及絕熱型吸收器性能研究[D];浙江大學(xué);2015年
8 李正興;旋流吸收器強(qiáng)化吸收過程的研究[D];江南大學(xué);2007年
,本文編號:2504828
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/2504828.html