鎂基儲(chǔ)氫材料的改性及其性能研究
[Abstract]:Magnesium based hydrogen storage materials are considered as one of the most promising hydrogen storage materials due to their high hydrogen storage capacity (7.6 wt.%), rich resources and low cost, but their high hydrogen absorption and desorption temperatures. The slow kinetics of hydrogen absorption and desorption hinders its practical industrial application. In this paper, the effect of high temperature and high pressure hydrogenation on the content of Mg H2 in the sample was studied by using Mg powder as the initial raw material. Furthermore, the Cs FFU Ti Ni F 2 was selected to modify Mg H2 by multiphase ball milling. The hydrogen desorption properties of Mg H2 Li Al H 4 composite system were also studied. In this paper, Mg H2 hydrogen storage alloys were prepared by using p-C-T tester under high temperature and high pressure. The optimum preparation process was determined. The milling parameters of Mg powder were as follows: ratio of ball to material 40: 1, rotational speed 300 r / min, milling time 6 h, argon gas, hydrogenation parameter: hydrogen pressure 4 MPA, temperature 653 K, twice hydrogenation time 48 h and 24 h, respectively. It is found that the content of Mg H2 in the sample prepared by the above process is about 98 wt.%. Furthermore, the hydrogen storage samples of Mg H 2M (M:Cs FN Ti Ni F 2) were prepared by multiphase ball milling. The results of hydrogen absorption and desorption and XRD test showed that the three additives had a good catalytic effect on the hydrogen absorption and desorption kinetics of Mg H2, but the mechanism of their catalytic mechanism was different, and. Ti C existed stably in the process of hydrogen absorption and desorption. There was no reaction with Mg H2, which resulted in the surface modification of Mg H2 in the form of traditional catalyst, which improved the hydrogen absorption and desorption performance of Mg H2. However, the reaction of 2Cs F Mg H 2 + 2Cs H Mg F 2N Ni F2?4H2O 7Mg H 2 Mg2Ni H 4 Mg F 2 4Mg O 9H2 with the matrix occurred during the hydrogen absorption and desorption process of Cs F 2 Ni F 2, which promoted the hydrogen absorption and desorption process of Mg H 2. For Cs F and Ti C, both showed the best catalytic effect at the addition amount of 5wt.%, while the performance of Ni F2 was better when adding 2wt.%. Compared with each other, the catalytic activity of Cs F is more prominent. When the addition amount of Cs F is 5 wt.%, the hydrogen release capacity at 573K reaches 7.06wt.and the reversible hydrogen absorption capacity is 7.09wt.and the hydrogen absorption capacity at 473K reaches 6.33wt. The hydrogen release properties of Mg H 2 Li Al H 4 O mg H 2 Li Al H 4 5wt.%Ti C prepared by ball milling were tested and XRD results showed that Mg H 2 Li Al H 4 was superior to Mg H 2. At low temperature (under 473K), Mg H _ 2 Li Al H _ 4 exhibits only the unilateral hydrogen release behavior of Li Al H _ 4. When the temperature reaches 523K, there is a synergistic hydrogen release effect. The synergistic effect is that the Al atoms produced by the decomposition of Li Al H4 decrease the stability of Mg H2, and produce two new phases, Mg2Al3 and Mg17Al12, which change the process of Mg H2 dehydrogenation. The addition of Ti C on the basis of Mg H2 Li Al H4 increases the phase interface between Mg H2 and Li Al H4, which is beneficial to the synergistic dehydrogenation effect between Mg H2 and Li Al H4, and further improves the dehydrogenation kinetics of the system.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB34
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳偉;李慎蘭;羅剛;韓興博;陳德敏;劉實(shí);楊柯;;載鈀硅藻土的制備及其吸放氫性能研究[J];原子能科學(xué)技術(shù);2010年08期
2 宏存茂,馬蘭,黃季平,林秋竹,韓德剛;鈦錳二元合金的吸放氫性能[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);1991年02期
3 周惦武;劉金水;盧遠(yuǎn)志;張楚慧;;鎂基儲(chǔ)氫材料的吸放氫性能[J];機(jī)械工程材料;2008年04期
4 程宏輝;李文彪;李超;楊艷能;潘金平;;容量法材料吸放氫性能測(cè)試技術(shù)研究進(jìn)展[J];煤炭技術(shù);2014年02期
5 夏羅生;朱樹紅;;Al-LiBH_4體系解氫性能的機(jī)制研究[J];稀有金屬;2013年04期
6 于振興,王爾德,劉祖巖,線恒澤;納米晶復(fù)合物Mg-Ni-Cr_2O_3的吸放氫性能[J];中國(guó)有色金屬學(xué)報(bào);2002年04期
7 曉敏;Ti_3Al-Ni合金的吸放氫性能[J];金屬功能材料;2002年05期
8 長(zhǎng)征;細(xì)晶富鎂Mg-Ni-Nd合金的吸放氫性能[J];金屬功能材料;2003年01期
9 吳哲;肖學(xué)章;俞凱嶸;范修林;李壽權(quán);陳立新;;鐠、釹氫化物催化劑對(duì)NaH/Al復(fù)合物吸放氫性能的影響[J];中國(guó)稀土學(xué)報(bào);2010年02期
10 閆霞艷;桑革;朱新亮;;硼氫化物吸放氫性能的研究進(jìn)展[J];材料導(dǎo)報(bào);2011年09期
相關(guān)會(huì)議論文 前4條
1 羅道軍;胡偉康;張?jiān)适?汪根時(shí);;非晶態(tài)M1-Ni合金薄膜吸放氫性能的研究[A];第二屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1995年
2 陳玉安;林嘉靖;唐霞;;硼的添加對(duì)Mg2Ni儲(chǔ)氫合金吸放氫性能的影響[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
3 季世軍;孫俊才;于志偉;黑祖昆;嚴(yán)立;;球磨條件對(duì)Mg_(50)Ni_(50)非晶合金的形成及電化學(xué)吸放氫性能的影響[A];第三屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1998年
4 梁斌斌;何長(zhǎng)水;楊洪廣;;CO雜質(zhì)對(duì)SiO_2包覆LaNiAl合金吸放氫的影響[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告(第二卷)——中國(guó)核學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集第4冊(cè)(核材料分卷、同位素分離分卷、核化學(xué)與放射化學(xué)分卷)[C];2011年
相關(guān)博士學(xué)位論文 前4條
1 顧堅(jiān);硼氫化鈣基儲(chǔ)氫材料的吸放氫性能及其儲(chǔ)氫機(jī)理研究[D];浙江大學(xué);2014年
2 張健;鎂及其合金氫化物吸放氫性能及電子機(jī)制研究[D];湖南大學(xué);2009年
3 龐越鵬;鋁氫化鎂基儲(chǔ)氫材料的合成、吸放氫性能及其機(jī)理[D];浙江大學(xué);2014年
4 湯家俊;表面和界面對(duì)Mg-H體系吸放氫性能影響的理論研究[D];華南理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 黎偉;鎂基儲(chǔ)氫材料的改性及其性能研究[D];重慶大學(xué);2015年
2 梁浩;V-Ti-Cr-Fe合金吸放氫性能的研究[D];四川大學(xué);2006年
3 馬俊;稀土氧化物及孔道材料改性NaAlH_4吸放氫性能的研究[D];中南大學(xué);2011年
4 周海;LiBH_4基儲(chǔ)氫材料的吸放氫性能及其機(jī)理[D];浙江大學(xué);2012年
5 魏佳;微波輻射和添加劑對(duì)金屬—氮—?dú)潴w系吸放氫性能的影響[D];上海大學(xué);2014年
6 韓樂園;Mg基材料添加劑對(duì)LiBH_4配位氫化物吸放氫性能的影響機(jī)制研究[D];浙江大學(xué);2013年
7 竇濤;Ti-V基固溶體型儲(chǔ)氫合金吸放氫性能的研究[D];中國(guó)科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2006年
8 王麗媛;添加Y對(duì)Mg_(17)Al_(12)化合物組織和性能的影響[D];太原理工大學(xué);2014年
,本文編號(hào):2397993
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/2397993.html