熱—力作用下復合材料層合板的響應分析
[Abstract]:Composite materials have been widely used in aerospace, ship engineering, building engineering, vehicle manufacturing industry and mechanical engineering due to their excellent mechanical and physical properties. However, in the process of manufacturing, processing and using of composite materials, there are often severe temperature changes. Due to the different properties of laminated materials, significant temperature stress will occur in laminated plates. These thermal stresses will be large enough to cause excessive deformation of the structure, and even lead to the fracture, stripping and matrix destruction of laminated structure fibers. Therefore, in order to ensure the safety and reliability of composite laminates to the maximum extent, it is an important scientific problem to accurately predict the stress distribution in composite laminates under thermal loading. In this paper, the current situation of laminated plate theory is reviewed in detail, and the advantages and disadvantages of these theories are summarized. For laminated composite plates, the in-plane stress and transverse shear stress can be directly calculated by the constitutive equation. The theory achieves a good balance in efficiency and precision. Therefore, the work of this paper is based on this theory. Secondly, the global-local high-order shear deformation theory is derived in detail. Based on the initial displacement model of the global-local theory, the continuous condition of layered displacement, the continuous condition of transverse shear stress and the boundary condition of free surface stress are introduced. Finally, the final displacement model of global and local high-order shear deformation containing only 11 global displacement unknowns is obtained, which lays a theoretical foundation for the analysis of laminated plates under thermal load, force load and thermal-force load. According to the response analysis of laminated plates and sandwich plates under thermal load, the temperature field of laminated plates and the three-dimensional linear elastic solutions under thermal load are summarized. The analytical solution of simply supported laminated plates with four edges is given by using Navier's 's bipolar expansion method. Yeah, three layers, 0.r90.0.0.0.0.0.0.0.0.0.0. Four side simply supported laminated plates and 0./core/0 擄four side simply supported laminated plates are calculated, respectively. The thermal loads are distributed along the thickness, the thermal loads are distributed gradient, and the responses under the distributed thermal loads are solved by heat conduction. Compared with the published results of other scholars, the results show that the theory of global and local high order shear denaturation has obvious advantages in solving the thermal response analysis of composite laminated plates. At the same time, the thermal response of the laminated plate under the action of the temperature field calculated by the heat conduction equation is compared with that of the linear assumed temperature field. The results show that the assumption of an improper temperature field will lead to a large error in the thermal response of the laminated plate. Based on the effect of thermal load, the analytical solution of simply supported laminated plates with four edges under the action of thermal-force load is given, and the three-dimensional linear elastic solution of the laminated plate under the action of force load and thermal-force load is summarized. Numerical examples focus on the three layers of 0. / 90. The typical numerical examples of simply supported laminated plates with four edges subjected to force and thermal-mechanical loads are studied and compared with the results published by other scholars and the Abaqus finite element solution. The applicability and accuracy of the global-local high-order shear denaturation theory for the response analysis of composite laminated plates under thermal-mechanical loads are verified. Finally, by changing the direction and sequence of laminated laminates, the optimal design of laminated plates is carried out to reduce the interlaminar stress and improve the anti-delamination ability of composite materials. The optimization design is divided into two steps: the first step is to optimize the laying angle, and six typical laying angle combinations are designed; the second step is to optimize the laying sequence, based on the better laying angle combination found in the first step. Eight new schemes of different layering sequence are designed.
【學位授予單位】:東南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB33
【相似文獻】
相關期刊論文 前10條
1 洪明,陳浩然;修復對含分層損傷復合材料層合板振動特性的影響[J];玻璃鋼/復合材料;2002年03期
2 崔海濤,郝勇,溫衛(wèi)東;含孔復合材料層合板逐漸損傷破壞分析[J];理化檢驗(物理分冊);2002年04期
3 魏玉卿,陳斌;縫紉對復合材料層合板分層屈曲的影響[J];重慶大學學報(自然科學版);2004年07期
4 劉芹,任建亭,姜節(jié)勝,郭運強,陳換過;復合材料層合板非線性熱振動分析[J];動力學與控制學報;2005年01期
5 關志東;郭淵;;含缺陷的復合材料層合板低速沖擊過程的有限元模擬[J];復合材料學報;2006年02期
6 吉桂秀;李嬌顏;陳浩然;;多分層對復合材料層合板自振特性的影響[J];復合材料學報;2007年04期
7 賀躍進;張恒;;復合材料層合板裂紋診斷的實驗研究[J];玻璃鋼/復合材料;2008年02期
8 郭翔鷹;張偉;姚明輝;陳麗華;;復合材料層合板的混沌運動分析[J];振動與沖擊;2009年06期
9 程小全;楊琨;胡仁偉;鄒健;;縫合復合材料層合板拉伸疲勞損傷及其機理[J];力學學報;2010年01期
10 陳春露;劉文博;張璐;王榮國;隋曉東;鄭達;;復合材料層合板分層疲勞性能研究進展[J];玻璃鋼/復合材料;2012年01期
相關會議論文 前10條
1 吉桂秀;陳浩然;洪明;;含多個分層損傷復合材料層合板的自振特性研究[A];復合材料——基礎、創(chuàng)新、高效:第十四屆全國復合材料學術會議論文集(下)[C];2006年
2 盧智先;矯桂瓊;王平安;朱勝利;;含分層損傷的復合材料層合板壓縮力學行為的實驗研究[A];復合材料——基礎、創(chuàng)新、高效:第十四屆全國復合材料學術會議論文集(下)[C];2006年
3 郭翔鷹;張偉;陳麗華;;二自由度復合材料層合板的非線性動力學分析[A];慶祝中國力學學會成立50周年暨中國力學學會學術大會’2007論文摘要集(下)[C];2007年
4 郭翔鷹;張偉;姚明輝;陳麗華;;復合材料層合板的混沌運動分析[A];第八屆全國動力學與控制學術會議論文集[C];2008年
5 郭翔鷹;張偉;陳麗華;;復合材料層合板動力學方程的混沌研究[A];第十五屆全國復合材料學術會議論文集(下冊)[C];2008年
6 郭翔鷹;張偉;;角鋪設的復合材料層合板的動力學分析[A];現(xiàn)代數(shù)學和力學(MMM-XI):第十一屆全國現(xiàn)代數(shù)學和力學學術會議論文集[C];2009年
7 郭翔鷹;張偉;;角鋪設的復合材料層合板的混沌運動分析[A];中國力學學會學術大會'2009論文摘要集[C];2009年
8 郭翔鷹;張偉;;角鋪設的復合材料層合板的混沌運動[A];第十二屆全國非線性振動暨第九屆全國非線性動力學和運動穩(wěn)定性學術會議論文集[C];2009年
9 劉遠東;;含分層損傷復合材料層合板的動力破壞分析[A];中國工程物理研究院科技年報(2003)[C];2003年
10 呂霞;周儲偉;;復合材料層合板螺栓連接的數(shù)值模擬[A];中國力學大會——2013論文摘要集[C];2013年
相關博士學位論文 前10條
1 洪明;分層損傷復合材料層合板振動與聲特性研究[D];大連理工大學;2003年
2 劉偉先;復合材料層合板真空輔助濕鋪貼挖補修理分析方法研究[D];南京航空航天大學;2013年
3 劉志強;雷電環(huán)境下復合材料層合板電—磁—熱—結構耦合效應研究[D];西北工業(yè)大學;2015年
4 曹俊;遺傳算法及其在復合材料層合板設計中應用的研究[D];南京航空航天大學;2003年
5 呂書鋒;軸向外伸懸臂復合材料層合板的非線性動力學研究[D];北京工業(yè)大學;2013年
6 徐穎;復合材料層合板沖擊損傷及沖擊后疲勞壽命研究[D];南京航空航天大學;2007年
7 楊加明;濕熱環(huán)境下復合材料層合板的幾何非線性分析[D];南京航空航天大學;2005年
8 任曉輝;復合材料層合板C~0型高階鋸齒理論[D];大連理工大學;2014年
9 張璐;含分層缺陷復合材料層合板分層擴展行為與數(shù)值模擬研究[D];哈爾濱工業(yè)大學;2012年
10 侯玉品;復合材料層合板鋪層設計與離散結構選型優(yōu)化方法研究[D];大連理工大學;2013年
相關碩士學位論文 前10條
1 郭文輝;復合材料層合板鳥撞動響應及損傷分析[D];鄭州大學;2015年
2 胡成鉦;FRP復合材料三角形夾芯橋面板的強度分析[D];南京理工大學;2015年
3 陶斐;復合材料層合板動力學建模與內共振研究[D];蘇州大學;2015年
4 田立智;基于整體局部理論的復合材料層合板多體系統(tǒng)動力學研究[D];上海交通大學;2015年
5 簡曉彬;復合材料層合板疲勞累積損傷數(shù)值模擬[D];哈爾濱工業(yè)大學;2015年
6 孫浩然;基于主動Lamb波的復合材料層合板沖擊損傷識別研究[D];哈爾濱工業(yè)大學;2015年
7 劉英芝;復合材料層合板疲勞行為研究[D];哈爾濱工業(yè)大學;2015年
8 李洪朋;噪聲載荷條件下復合材料層合板動力學響應分析及疲勞壽命預報[D];哈爾濱工業(yè)大學;2015年
9 楊宇航;復合材料層合板結構非局部漸進失效建模與有限元分析[D];浙江大學;2015年
10 楊述松;基于二次開發(fā)的復合材料優(yōu)化技術研究[D];重慶理工大學;2015年
,本文編號:2358802
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/2358802.html