纖維增強(qiáng)聚合物復(fù)合材料注塑成型理論與實(shí)驗(yàn)研究
本文選題:纖維增強(qiáng)聚合物 + 注塑成型 ; 參考:《南昌大學(xué)》2017年博士論文
【摘要】:本文針對(duì)纖維增強(qiáng)聚合物復(fù)合材料注塑成型技術(shù)的若干關(guān)鍵問(wèn)題進(jìn)行深入研究,以期獲得相關(guān)成型理論知識(shí),指導(dǎo)提升成型制品質(zhì)量。本文主要研究?jī)?nèi)容概要如下:1.搭建了纖維增強(qiáng)聚合物復(fù)合材料注塑成型實(shí)驗(yàn)裝置,設(shè)計(jì)加工了較復(fù)雜結(jié)構(gòu)的注塑成型模具,完成了注塑成型實(shí)驗(yàn)裝置的安裝和調(diào)試,并進(jìn)行了相關(guān)實(shí)驗(yàn)研究;基于較全面考慮注塑成型過(guò)程中形成的殘余應(yīng)力場(chǎng)、溫度場(chǎng)、纖維增強(qiáng)聚合物復(fù)合材料的非均勻各向異性熱力學(xué)屬性,建立了纖維增強(qiáng)聚合物復(fù)合材料注塑成型流動(dòng)和熱應(yīng)力分析的三維耦合有限元總翹曲變形預(yù)測(cè)模型。模擬算例與實(shí)驗(yàn)結(jié)果對(duì)比表明:注塑件翹曲變形朝著無(wú)加強(qiáng)筋一側(cè),形成中間低四周高的“拱形”結(jié)構(gòu),預(yù)測(cè)值與實(shí)驗(yàn)結(jié)果變化趨勢(shì)一致,運(yùn)用該模型能提升翹曲變形的預(yù)測(cè)精度,表明該預(yù)測(cè)模型的有效性。2.圍繞注塑成型過(guò)程中聚合物熔體模腔充填和纖維取向的核心問(wèn)題,從粘性流體動(dòng)力學(xué)理論出發(fā),分析纖維增強(qiáng)聚合物復(fù)合材料注塑成型熔體流動(dòng)基本控制方程;針對(duì)長(zhǎng)纖維增強(qiáng)聚合物復(fù)合材料注塑成型的特點(diǎn),研究注塑成型過(guò)程中的纖維分布規(guī)律,著重分析和探討主要工藝參數(shù)對(duì)纖維分布的影響機(jī)理;基于復(fù)合材料力學(xué)性能均勻化理論,建立長(zhǎng)纖維增強(qiáng)聚合物復(fù)合材料的非線性彈塑性本構(gòu)模型,結(jié)合耦合有限元分析方法,研究了不同本構(gòu)模型對(duì)翹曲變形計(jì)算結(jié)果的差異,分析主要纖維參數(shù)對(duì)翹曲變形的影響規(guī)律。研究結(jié)果表明:(1)注射時(shí)間對(duì)纖維取向分布的影響最為顯著,澆口附近是長(zhǎng)短纖維共存區(qū),近壁面附近纖維較長(zhǎng);隨著注射時(shí)間的減小或模具溫度的升高,纖維取向值和纖維長(zhǎng)度均減小;隨著熔體溫度的升高,纖維取向值減小,但纖維長(zhǎng)度則先減小后增大;隨著保壓壓力的增加,纖維長(zhǎng)度減小,保壓壓力對(duì)纖維取向的影響與速度/壓力轉(zhuǎn)化有關(guān)。以上結(jié)果與文獻(xiàn)結(jié)論總體一致。(2)基于彈性和彈塑性本構(gòu)模型計(jì)算的注塑件翹曲變形形狀均為中間高四周低的“拱形”結(jié)構(gòu),前者比后者的最大翹曲變形量小約18%,模擬結(jié)果與理論分析相符;隨著纖維初始長(zhǎng)度、長(zhǎng)徑比和纖維含量的增加,最大翹曲變形量均隨之減小。3.基于有限元數(shù)值模擬技術(shù),綜合考慮壁面滑移速度和壓力對(duì)粘度的影響,建立了薄壁注塑流動(dòng)三維數(shù)值模型,通過(guò)實(shí)驗(yàn)結(jié)果對(duì)比,驗(yàn)證數(shù)值模型的可靠性,考察是否考慮壁面滑移對(duì)熔體模腔充填速度分布的影響,分析壁面滑移和粘度的壓力依賴性對(duì)薄壁模腔熔體充填的影響,從理論上分析和解釋其影響機(jī)理。數(shù)值模擬與實(shí)驗(yàn)結(jié)果對(duì)比表明:只有同時(shí)考慮壁面滑移和粘度的壓力依賴性才能更好地預(yù)測(cè)薄壁注塑成型流動(dòng)過(guò)程,忽略壁面滑移或粘度的壓力依賴性,對(duì)薄壁注塑成型過(guò)程均有不同程度的影響。上述研究有助于對(duì)薄壁注塑成型理論及較之傳統(tǒng)注塑成型固有特性的認(rèn)識(shí)提供理論參考。4.在三維薄壁注塑流動(dòng)數(shù)值模型得到驗(yàn)證的基礎(chǔ)上,研究壁面滑移和粘度的壓力依賴性,對(duì)纖維增強(qiáng)聚合物復(fù)合材料薄壁注塑成型纖維取向和翹曲變形的影響,分析不同模型簡(jiǎn)化條件對(duì)數(shù)值模擬結(jié)果的影響,并從理論上探明其影響機(jī)理,研究主要注塑成型工藝參數(shù)對(duì)纖維增強(qiáng)聚合物復(fù)合材料薄壁注塑件的纖維取向分布,以及最大翹曲變形量的影響。研究結(jié)果表明:(1)通過(guò)與實(shí)驗(yàn)結(jié)果對(duì)比,考慮壁面滑移和粘度壓力依賴性的三維數(shù)值模擬,能較好地?fù)渥胶穸确较虻睦w維取向分布,忽略壁面滑移或壓力對(duì)粘度的影響,對(duì)纖維取向分布均有不同程度的影響,基于常規(guī)Hele-Shaw薄壁近似計(jì)算的芯層纖維取向分布與實(shí)際差異較大。(2)注射速率對(duì)纖維取向的影響最大,熔體溫度次之,模具溫度、保壓壓力和保壓時(shí)間對(duì)纖維取向的影響較小。(3)隨著注射速率,熔體溫度,模具溫度的增加,最大翹曲變形量均隨之增大,但注射速率達(dá)到一定值后影響減小;隨著保壓壓力的增加,最大翹曲變形量減小;保壓時(shí)間對(duì)最大翹曲變形量的影響較小。
[Abstract]:In this paper, some key problems in the injection molding of fiber reinforced polymer composites are studied in order to obtain relevant theoretical knowledge and guide the quality of molding products. The main contents of this paper are as follows: 1. the experimental device for the injection molding of fiber reinforced polymer composites is set up, and the design and processing are more complex. The injection molding mold of mixed structure has completed the installation and debugging of the injection molding experimental device, and carried out the related experimental research. Based on the comprehensive consideration of the residual stress field, the temperature field and the non-uniform anisotropy of the fiber reinforced polymer composites, the fiber reinforced polymer complex is established. The three dimensional coupled finite element warpage prediction model is used to predict the flow and thermal stress of the injection molding. The comparison of the simulation examples and the experimental results shows that the warpage of the injection parts is facing the non reinforcement side, forming a "arch" structure with low middle height in the middle, and the prediction value is in accordance with the experimental results, and the model can be used to improve the warpage. The prediction accuracy of the curved deformation indicates that the validity of the prediction model is.2. around the core problem of the filling and fiber orientation of the polymer melt in the injection molding process. Based on the viscous fluid dynamics theory, the basic control equation of the melt flow in the injection molding of the fiber reinforced polymer composite is analyzed. The distribution of fiber in the injection molding process is studied, and the influence mechanism of the main process parameters on the fiber distribution is analyzed and discussed. The non linear elastoplastic constitutive model of the long fiber reinforced polymer composites is established based on the homogenization theory of the mechanical properties of the composite materials, and the coupled finite element analysis is combined with the coupled finite element analysis. Method, the difference of warpage calculation results of different constitutive models was studied, and the effect of main fiber parameters on Warpage was analyzed. The results showed that: (1) the effect of injection time on fiber orientation distribution was the most significant, near the gate was long short fiber coexistence area, fiber near the near wall surface was longer, with the injection time decreasing or With the increase of die temperature, the fiber orientation value and fiber length decrease. With the increase of the melt temperature, the fiber orientation value decreases, but the fiber length decreases first and then increases. With the increase of pressure pressure, the fiber length decreases, and the influence of the pressure on the fiber orientation is related to the speed / pressure transformation. The above results are generally with the literature conclusion. (2) the warpage shapes of injection molded parts based on elastic and elastoplastic constitutive models are all "arch" structures with low middle and low middle, the former is about 18% smaller than the latter, and the simulation results agree with the theoretical analysis. With the increase of fiber initial length, length diameter ratio and fiber content, the maximum warpage deformation is all followed. .3. based on the finite element numerical simulation technology and considering the influence of the wall slip velocity and pressure on the viscosity, a three-dimensional numerical model of the thin wall injection flow is established. By comparing the experimental results, the reliability of the numerical model is verified. The effect of the wall slip on the velocity distribution of the melt cavity filling is considered, and the wall slip and the wall slip are analyzed. The effect of pressure dependence of viscosity on melt filling of thin-walled mold cavity is analyzed and explained theoretically. The comparison between numerical simulation and experimental results shows that the pressure dependence of wall slip and viscosity can be better predicted by considering the pressure dependence of wall slip and viscosity at the same time, and the pressure dependence of wall slip or viscosity is ignored. This study provides a theoretical reference for the theory of thin-walled injection molding and the understanding of the inherent characteristics of the traditional injection molding. Based on the verification of the numerical model of three-dimensional thin wall injection flow, the pressure dependence of the slip and viscosity of the wall is studied and the fiber reinforced.4. is reinforced. The influence of the fiber orientation and warp deformation on the thin wall injection molding of polymer composites is analyzed. The influence of different model simplification conditions on the numerical simulation results is analyzed, and the influence mechanism is explored theoretically. The fiber orientation distribution and the maximum warping of the main injection molding process parameters to the fiber reinforced polymer composite thin wall injection molding parts are studied. The results show that: (1) by comparing with the experimental results, the three-dimensional numerical simulation of wall slip and viscosity pressure dependence can be used to catch the fiber orientation distribution in the thickness direction better, neglecting the effect of wall slip or pressure on the viscosity, and to varying degrees of influence on the fiber orientation distribution, based on the conventional Hele The orientation distribution of core fiber in the -Shaw thin wall approximate calculation is different from the actual difference. (2) the injection rate has the greatest influence on the fiber orientation, the melt temperature is the second, the mold temperature, the pressure holding pressure and the holding time have little effect on the fiber orientation. (3) the maximum warping deformation increases with the injection rate, the melting temperature and the mold temperature. It is large, but the effect decreases after the injection rate reaches a certain value, and the maximum warpage deformation decreases with the increase of pressure protection pressure, and the influence of pressure holding time on the maximum warpage is less.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ327;TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙彩;冷卻水質(zhì)對(duì)注塑成型的影響[J];國(guó)外塑料;2003年04期
2 ;雙組分注塑成型新設(shè)備面世[J];橡塑技術(shù)與裝備;2004年11期
3 ;穆格公司獨(dú)特的全電動(dòng)注塑成型解決方案[J];塑料工業(yè);2005年07期
4 許荔珉,李澍,胡炯宇;注塑成型質(zhì)量缺陷分析[J];模具技術(shù);2005年02期
5 宋滿倉(cāng);顏克輝;;薄壁注塑成型數(shù)值模擬技術(shù)的發(fā)展現(xiàn)狀[J];塑料科技;2006年01期
6 劉方輝;錢心遠(yuǎn);張杰;;注塑成型新技術(shù)的發(fā)展概況[J];塑料科技;2009年03期
7 ;塑料代銅、代鋁注塑成型[J];儀器儀表通訊;1973年02期
8 宣大榮;4000噸超大型注塑成型機(jī)問(wèn)世[J];江蘇機(jī)械;1987年06期
9 陳明華;;節(jié)能減排在注塑成型系統(tǒng)中的應(yīng)用[J];上海塑料;2013年04期
10 汪瀚,周雄輝,張永清;基于模擬反饋的注塑成型并行設(shè)計(jì)方法研究[J];機(jī)械科學(xué)與技術(shù);2000年04期
相關(guān)會(huì)議論文 前10條
1 劉巽浩;;談精密注塑成型[A];工程塑料優(yōu)選論文集[C];1993年
2 劉巽浩;;談精密注塑成型[A];工程塑料——精密注射成型及注塑成型模具技術(shù)交流會(huì)論文集[C];1990年
3 宋滿倉(cāng);劉柱;于同敏;趙丹陽(yáng);王敏杰;;超薄塑件注塑成型特性的試驗(yàn)研究與數(shù)值模擬[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
4 申長(zhǎng)雨;劉春太;;注塑成型數(shù)值模擬的研究進(jìn)展和發(fā)展趨勢(shì)[A];首屆中國(guó)CAE工程分析技術(shù)年會(huì)暨2005全國(guó)計(jì)算機(jī)輔助工程(CAE)技術(shù)與應(yīng)用高級(jí)研討會(huì)論文集[C];2005年
5 劉金海;伍福鈞;;幀行骨架注塑成型[A];工程塑料優(yōu)選論文集[C];1993年
6 申長(zhǎng)雨;陳靜波;劉春太;李倩;;塑料成型加工講座(第六講) 注塑成型制品的質(zhì)量控制[A];’2000中國(guó)工程塑料加工應(yīng)用技術(shù)研討會(huì)論文集[C];2000年
7 劉金海;;扁長(zhǎng)塑料件的注塑成型[A];工程塑料優(yōu)選論文集[C];1993年
8 ;注塑成型機(jī) 混煉擠出機(jī)生產(chǎn)廠家介紹[A];工程塑料優(yōu)選論文集[C];1993年
9 王賢洪;;淺談變頻節(jié)能器在注塑行業(yè)中的運(yùn)用[A];第一屆變頻器與伺服企業(yè)論壇論文集[C];2003年
10 王學(xué)義;;塑料注塑成型模具負(fù)壓冷卻技術(shù)[A];工程塑料優(yōu)選論文集[C];1993年
相關(guān)重要報(bào)紙文章 前10條
1 李堅(jiān);理性看待抱團(tuán)自救[N];東莞日?qǐng)?bào);2011年
2 記者 吉明亮;東精集團(tuán)用自動(dòng)化破難題增效益[N];金華日?qǐng)?bào);2011年
3 記者 危麗瓊;北化—Moldflow華北技術(shù)推廣中心成立[N];中國(guó)化工報(bào);2008年
4 姜小毛;我氣輔注塑技術(shù)研發(fā)獲重大突破[N];中國(guó)化工報(bào);2006年
5 博創(chuàng);脈動(dòng)壓力注塑成型設(shè)備在廣州通過(guò)鑒定[N];中國(guó)工業(yè)報(bào);2006年
6 白馬非;輕量化包裝理應(yīng)受寵[N];消費(fèi)日?qǐng)?bào);2012年
7 王秀蘭;瓦克皮革聚合物復(fù)合材料獲獎(jiǎng)[N];中國(guó)化工報(bào);2011年
8 北京理工大學(xué)化工與環(huán)境學(xué)院 王建;輕質(zhì)、易回收的復(fù)合材料[N];中國(guó)社會(huì)科學(xué)報(bào);2013年
9 武漢建筑材料工業(yè)設(shè)計(jì)研究院副院長(zhǎng) 王海雁;纖維增強(qiáng)水泥板及纖維增強(qiáng)硅酸鈣板的最新發(fā)展[N];中國(guó)建材報(bào);2007年
10 錢松;纖維長(zhǎng)度增 材料性更優(yōu)[N];中國(guó)化工報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 江青松;纖維增強(qiáng)聚合物復(fù)合材料注塑成型理論與實(shí)驗(yàn)研究[D];南昌大學(xué);2017年
2 楊建根;水輔助注塑成型穿透機(jī)理及工藝穩(wěn)健優(yōu)化研究[D];上海交通大學(xué);2014年
3 馬斌;虛擬注塑成型系統(tǒng)開(kāi)發(fā)關(guān)鍵技術(shù)研究[D];上海交通大學(xué);2007年
4 祝鐵麗;注塑成型制品收縮率預(yù)測(cè)理論與方法的研究[D];大連理工大學(xué);2002年
5 楊鐸;聚合物熔體表面效應(yīng)與平板微器件的注塑成型研究[D];大連理工大學(xué);2011年
6 李闖;注塑成型生產(chǎn)過(guò)程優(yōu)化控制方法研究[D];東北大學(xué);2010年
7 曹偉;注塑成型中粘性不可壓縮非等溫熔體的三維流動(dòng)模擬[D];鄭州大學(xué);2004年
8 劉瑩;基于微流控芯片的微結(jié)構(gòu)制品注塑成型工藝技術(shù)研究[D];大連理工大學(xué);2012年
9 王建;基于注塑裝備的聚合物PVT關(guān)系測(cè)控技術(shù)的研究[D];北京化工大學(xué);2010年
10 莊儉;微注塑成型充模流動(dòng)理論與工藝試驗(yàn)研究[D];大連理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 程明科;薄壁防水墊片注塑模具設(shè)計(jì)與注塑成型CAE分析[D];西京學(xué)院;2015年
2 胡盛財(cái);超聲波輔助玻纖增強(qiáng)型PC注塑成型的研究[D];集美大學(xué);2015年
3 王凱;移動(dòng)掃描終端外殼結(jié)構(gòu)的CAE分析[D];蘇州大學(xué);2015年
4 韓瑩;殼體注塑成型數(shù)值模擬及工藝研究[D];沈陽(yáng)理工大學(xué);2015年
5 史太攀;基于灰色系統(tǒng)理論的塑料件收縮分析及后處理收縮的預(yù)測(cè)[D];上海應(yīng)用技術(shù)學(xué)院;2015年
6 王生丹;美容用聚合物微針的微注塑成型及其制品測(cè)試[D];北京化工大學(xué);2015年
7 金志偉;基于Moldflow的注塑成型缺陷分析和工藝參數(shù)優(yōu)化[D];寧波大學(xué);2015年
8 王林剛;聚合物平板微器件復(fù)合成型工藝研究及測(cè)試[D];大連理工大學(xué);2015年
9 張巍;微小塑料機(jī)構(gòu)模內(nèi)裝配注塑成型關(guān)鍵技術(shù)研究[D];大連理工大學(xué);2015年
10 云崗;超聲振動(dòng)整體型腔式微流控芯片注塑成型研究[D];大連理工大學(xué);2015年
,本文編號(hào):1985399
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/1985399.html