點(diǎn)陣夾芯圓柱殼抗屈曲性能模擬研究
本文選題:點(diǎn)陣夾芯 + 圓柱殼; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:點(diǎn)陣夾芯結(jié)構(gòu)是指由兩層蒙皮及中間點(diǎn)陣桁架組成的夾層結(jié)構(gòu),具有輕質(zhì)高強(qiáng)、減震及隔熱性能好、比模量高、可設(shè)計(jì)性好等優(yōu)點(diǎn),廣泛應(yīng)用于航空航天、船舶、建筑等諸多領(lǐng)域。本文通過建立參數(shù)與性能的關(guān)系,使用有限元分析方法討論不同點(diǎn)陣參數(shù)的金字塔、四面體及KAGOME結(jié)構(gòu)圓柱殼在外載作用下抗屈曲能力的差異。推導(dǎo)出了三種結(jié)構(gòu)點(diǎn)陣單胞相對(duì)密度及等效模量與結(jié)構(gòu)參數(shù)的關(guān)系式,并通過實(shí)驗(yàn)進(jìn)行了驗(yàn)證。使用ANSYS workbench對(duì)點(diǎn)陣夾芯圓柱殼進(jìn)行軸壓及外壓作用下的特征值屈曲分析,通過正交試驗(yàn)探求圓柱殼蒙皮厚度、單胞數(shù)量及桿件粗細(xì)對(duì)其結(jié)構(gòu)整體抗屈曲能力的影響情況。在軸壓及外壓作用下夾芯圓柱殼的臨界屈曲載荷與三種結(jié)構(gòu)參數(shù)均成正相關(guān),軸壓作用下,圓柱殼的蒙皮厚度為影響其抗屈曲能力及承壓效率的主要因素,芯子的作用十分微弱,三種點(diǎn)陣結(jié)構(gòu)的抗屈曲能力差別不大,蒙皮厚度為3mm的圓柱殼抗屈曲能力明顯強(qiáng)于蒙皮厚度為1mm和2mm時(shí)。外壓作用下,圓柱殼蒙皮厚度的影響依然可觀,但此時(shí)單胞數(shù)量及桿粗的影響也不容忽視,點(diǎn)陣單胞中桿件與蒙皮夾角為45°時(shí),夾芯單胞擁有最高的等效模量,三種結(jié)構(gòu)中,四面體結(jié)構(gòu)擁有最佳的抗外壓屈曲性能,點(diǎn)陣參數(shù)為蒙皮厚度3mm,單胞數(shù)量200個(gè),桿粗4mm的夾芯圓柱殼臨界載荷及承壓效率最高。單胞數(shù)量為20×10,桿粗2mm的四面體點(diǎn)陣夾芯圓柱殼在蒙皮厚度大于3mm時(shí),承壓效率開始下降。在熱載荷下,熱屈曲的部位為熱量集中最明顯的外蒙皮,所以增多桿件數(shù)量或加粗桿件等一些利于換熱的手段都會(huì)有效增強(qiáng)結(jié)構(gòu)的抗熱屈曲性能,相對(duì)的會(huì)減弱夾芯圓柱殼的隔熱能力,影響結(jié)構(gòu)抵抗熱屈曲能力的主要參數(shù)為單胞數(shù)量,其次為桿粗,最后是蒙皮厚度。同時(shí)四面體結(jié)構(gòu)的隔熱能力最好,而KAGOME結(jié)構(gòu)擁有最好的抗熱屈曲性能。在熱力耦合分析中,外壓、軸壓及熱載荷等外載作用強(qiáng)度方差分析的F比分別為14.255、2.158、1.547,外壓的作用最容易使圓柱殼發(fā)生屈曲,而熱載荷及軸壓的作用強(qiáng)度較低。
[Abstract]:Lattice sandwich structure is a sandwich structure composed of two layers of skin and intermediate lattice truss. It has the advantages of light weight and high strength, good shock absorption and heat insulation, high specific modulus, good designability and so on. It is widely used in aerospace and ship. Architecture and many other fields. In this paper, by establishing the relationship between parameters and properties, the difference of buckling resistance of cylindrical shells with different lattice parameters, such as pyramid, tetrahedron and KAGOME structure under external loading, is discussed by using finite element analysis method. The relationship between the relative cell density and equivalent modulus of three kinds of lattice cells and structural parameters is derived and verified by experiments. The eigenvalue buckling analysis of lattice sandwich cylindrical shells under axial and external pressure was carried out by using ANSYS workbench. The effects of skin thickness, cell number and rod thickness on the overall buckling resistance of cylindrical shells were investigated by orthogonal test. The critical buckling load of the sandwich cylindrical shell under axial and external pressure is positively correlated with the three structural parameters. Under axial compression, the skin thickness of the cylindrical shell is the main factor affecting its buckling resistance and compression efficiency. The effect of core is very weak, and the buckling ability of the three lattice structures is not different. The buckling ability of cylindrical shells with 3mm thickness is better than that with 1mm and 2mm. The effect of external pressure on the thickness of shell skin is still considerable, but the effect of cell number and rod thickness can not be ignored. When the angle between rod and skin in lattice cell is 45 擄, the core cell has the highest equivalent modulus. The tetrahedron structure has the best buckling performance under external compression. The lattice parameters are skin thickness of 3 mm, the number of unit cells 200, and the maximum critical load and compression efficiency of the sandwich cylindrical shell with thick rod 4mm. The pressure efficiency of tetrahedron lattice sandwich cylindrical shell with thick 2mm rod is 20 脳 10 when the thickness of the shell is larger than that of 3mm. Under the thermal load, the thermal buckling is located on the outer skin, which has the most obvious heat concentration. Therefore, increasing the number of bars or thickening the rods and other means conducive to heat transfer will effectively enhance the thermal buckling performance of the structure. The heat insulation ability of the sandwich cylindrical shell will be weakened relatively, and the main parameter affecting the thermal buckling resistance of the structure is the number of unit cells, the second is the rod thickness, and the last is the thickness of the skin. At the same time, tetrahedron structure has the best thermal stability, while KAGOME structure has the best thermal buckling performance. In thermodynamic coupling analysis, the F ratio of external load strength analysis of variance analysis of external pressure, axial pressure and thermal load is 14.255 / 2.1581.547, respectively. The effect of external pressure is the most likely to cause buckling of cylindrical shell, but the effect of thermal load and axial pressure is relatively low.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB303
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李彥兵;岳高偉;;鋼化真空玻璃支撐點(diǎn)的排布方式[J];材料科學(xué)與工程學(xué)報(bào);2016年06期
2 孫士平;余樂權(quán);;點(diǎn)陣夾芯圓筒扭轉(zhuǎn)穩(wěn)定性的參數(shù)化分析[J];機(jī)械科學(xué)與技術(shù);2016年05期
3 Xiaodong Li;Linzhi Wu;Li Ma;Xiangqiao Yan;;Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames[J];Theoretical & Applied Mechanics Letters;2016年02期
4 馮麗娜;熊健;鄭偉;楊金水;吳林志;;復(fù)合材料波紋夾層圓柱殼設(shè)計(jì)及軸壓性能[J];復(fù)合材料學(xué)報(bào);2016年02期
5 易建坤;李裕春;高斌;劉闖;;填充泡沫鋁的金字塔形點(diǎn)陣鋼材料夾芯方板抗爆性能數(shù)值研究[J];應(yīng)用力學(xué)學(xué)報(bào);2015年05期
6 李耀宙;王澤武;夏良志;陳鯤鵬;;圓筒形薄殼熱屈曲臨界溫升一般表達(dá)式構(gòu)建[J];化工設(shè)備與管道;2014年06期
7 錢海峰;張振華;牟金磊;杜國(guó)賓;;金字塔點(diǎn)陣夾芯板單元結(jié)構(gòu)準(zhǔn)靜態(tài)壓縮性能研究[J];中國(guó)艦船研究;2013年05期
8 余樂權(quán);凌龍平;余承斌;;點(diǎn)陣截面對(duì)點(diǎn)陣夾芯圓柱殼性能的影響[J];機(jī)械制造;2013年06期
9 王琪;吉庭武;謝公南;張衛(wèi)紅;;輕質(zhì)熱防護(hù)系統(tǒng)波紋夾芯結(jié)構(gòu)熱力耦合分析[J];應(yīng)用數(shù)學(xué)和力學(xué);2013年02期
10 陳立明;戴政;范華林;方岱寧;;輕質(zhì)點(diǎn)陣夾層圓柱殼的設(shè)計(jì)與分析[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
相關(guān)會(huì)議論文 前1條
1 楊金水;馬力;熊健;王兵;吳林志;;復(fù)合材料點(diǎn)陣夾芯結(jié)構(gòu)阻尼特性的研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 高亮;多功能復(fù)合點(diǎn)陣夾芯結(jié)構(gòu)主動(dòng)換熱及優(yōu)化設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 孟凡壹;超輕多孔材料嵌鎖制備工藝及性能研究[D];哈爾濱工業(yè)大學(xué);2015年
2 張巖巖;熔模鑄造點(diǎn)陣夾芯板的制備與力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2014年
3 張蒙;金字塔金屬點(diǎn)陣夾芯結(jié)構(gòu)的制備及力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2014年
4 王曉君;輕質(zhì)點(diǎn)陣主動(dòng)換熱壁板熱力耦合分析[D];哈爾濱工業(yè)大學(xué);2014年
5 李洋;薄壁加筋結(jié)構(gòu)屈曲分析及優(yōu)化設(shè)計(jì)[D];北京工業(yè)大學(xué);2013年
6 蔡振;飛行器熱結(jié)構(gòu)設(shè)計(jì)及熱力耦合響應(yīng)分析[D];哈爾濱工業(yè)大學(xué);2013年
7 彭亮;復(fù)合材料金字塔點(diǎn)陣圓柱殼制備工藝及軸向壓縮性能研究[D];哈爾濱工業(yè)大學(xué);2012年
8 隋洲;IN718合金熔模精鑄3D-Kagome結(jié)構(gòu)的數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2010年
9 張國(guó)旗;復(fù)合材料四面體點(diǎn)陣夾芯結(jié)構(gòu)的制備及其力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2010年
10 張昌天;二維點(diǎn)陣復(fù)合材料結(jié)構(gòu)的制備與性能[D];國(guó)防科學(xué)技術(shù)大學(xué);2008年
,本文編號(hào):1896727
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/1896727.html