多重電磁耗散機(jī)制納米復(fù)合材料的原位制備及其電磁性能研究
本文選題:納米復(fù)合材料 + 原位制備 ; 參考:《河南大學(xué)》2015年碩士論文
【摘要】:吸波材料對(duì)電磁波的能量耗散,主要來(lái)自于材料的介電損耗和磁損耗以及二者匹配。介電損耗主要是指通過(guò)介質(zhì)的電子極化,離子極化或界面極化效應(yīng)來(lái)吸收、衰減電磁波;磁損耗則主要是通過(guò)磁滯損耗、疇壁共振、渦流損耗和后效損耗等磁化機(jī)制來(lái)實(shí)現(xiàn)對(duì)電磁波的吸收和衰減。隨著吸波材料應(yīng)用領(lǐng)域的不斷拓展,對(duì)吸波材料的要求也越來(lái)越苛刻。開(kāi)發(fā)吸收頻帶寬、厚度薄、吸收能力強(qiáng)、質(zhì)量輕的電磁波吸收材料已經(jīng)引起世界各國(guó)的關(guān)注。納米吸波材料作為一類(lèi)新型的電磁吸波材料,不僅具有較好的電磁波吸收性能,且兼具質(zhì)量輕,厚度薄,頻帶寬等優(yōu)勢(shì),成為目前電磁領(lǐng)域的研究熱點(diǎn)。然而,由于納米材料尺寸小,表面能高,容易團(tuán)聚,因此,如何很好的實(shí)現(xiàn)納米材料的分散性能是其應(yīng)用研究需要解決的關(guān)鍵性問(wèn)題。此外,理想的電磁波吸收材料希望能同時(shí)具有高的磁損耗因子(tanδM=μr"/μr')以及高的介電損耗因子(tanδE=εr"/εr')。單一組元的吸波劑,難以滿足高效吸波性能的要求,因此,如何同步提高這兩組參數(shù)對(duì)于制備高性能電磁波吸收材料至關(guān)重要。本論文工作采用簡(jiǎn)單的原位復(fù)合方法,將具有不同電磁耗散機(jī)制的納米材料進(jìn)行原位復(fù)合,制備得到系列納米復(fù)合吸波材料。希望在有效提高納米材料的分散性能的同時(shí)賦予材料更多的損耗機(jī)制及其它的性能可調(diào)控性,從而實(shí)現(xiàn)對(duì)材料的優(yōu)化設(shè)計(jì)。利用透射電子顯微鏡(TEM)、場(chǎng)發(fā)射掃描電子顯微鏡(FESEM)、X射線衍射儀(XRD)、共焦顯微拉曼激光光譜儀等儀器對(duì)得到的納米復(fù)合材料進(jìn)行了形貌、結(jié)構(gòu)的表征,探討了樣品組成、形貌、結(jié)構(gòu)及微觀缺陷等對(duì)其磁性和電磁性能的影響,在此基礎(chǔ)上,實(shí)現(xiàn)對(duì)其性能的調(diào)控,得到具有理想綜合性能的電磁吸波材料。主要研究?jī)?nèi)容和結(jié)果如下:1.在液相系統(tǒng)中,Ni/ITO納米復(fù)合材料的制備是通過(guò)簡(jiǎn)便的原位還原法以氯化鎳作為鎳源,水合肼作為還原劑以及用NaOH調(diào)節(jié)溶液的pH來(lái)完成的。在所制備的納米復(fù)合材料中,ITO納米粒子不僅僅作為隔離介質(zhì)防止磁性納米粒子的團(tuán)聚,而且還賦予摻混納米復(fù)合材料利于電磁波吸收的額外界面極化機(jī)制。結(jié)果表明,與純相Ni或ITO納米顆粒相比,Ni/ITO納米復(fù)合材料表現(xiàn)出明顯增強(qiáng)的吸波性能。這是因?yàn)榉谴判缘腎TO納米粒子有助于Ni納米粒子在所制備的Ni/ITO納米復(fù)合材料中實(shí)現(xiàn)均勻分散,從而有利于獲得合適的電磁阻抗匹配并促進(jìn)額外的界面極化機(jī)制來(lái)增強(qiáng)微波吸收。本研究有望在制備具有可調(diào)控組成和電磁性能的先進(jìn)吸波復(fù)合材料方面開(kāi)辟新的途徑。2.在本研究中,潛在的輕質(zhì)微波吸收體Ni/C納米復(fù)合材料是通過(guò)簡(jiǎn)便的方法在流動(dòng)的氨氣氣氛中煅燒硝酸鎳-聚丙烯酰胺的混合物而制備。并對(duì)所制備N(xiāo)i/C納米復(fù)合材料的電磁特性與其組成和微觀結(jié)構(gòu)之間的聯(lián)系進(jìn)行考察。研究結(jié)果表明,所制備的Ni/C納米復(fù)合材料具有島嶼狀結(jié)構(gòu)并由多孔碳基質(zhì)和尺寸約為幾百納米的鎳納米顆粒組成且Ni/C納米復(fù)合材料表現(xiàn)出優(yōu)異的電磁性能。Ni/C納米復(fù)合材料電磁性能對(duì)溫度具有高度的依賴(lài)性,且在600。C時(shí)制備得到的Ni/C納米復(fù)合材料具有理想的吸波性能。在較小的吸波厚度2.3-7.0 mm范圍內(nèi),其RL-20 dB(對(duì)電磁波的吸收高達(dá)99%)的頻段范圍可達(dá)到13.5 GHz。這歸功于復(fù)合材料中特殊的介孔結(jié)構(gòu)和理想的電磁阻抗匹配以及Ni納米顆粒在碳基質(zhì)中的均勻分散。即,Ni/C納米復(fù)合材料中碳基質(zhì)的存在利于誘導(dǎo)產(chǎn)生多重介電極化從而提高Ni/C納米復(fù)合材料的電磁損耗性能,而且碳的存在在提高復(fù)合材料熱穩(wěn)定性,化學(xué)穩(wěn)定性和介電性能的同時(shí)還可以保留金屬Ni的本征磁性。3.TiN/C納米復(fù)合材料的制備是以鈦酸納米管(H2Ti2O4(OH)2, NTA)和聚丙烯酰胺(PAM)為原料通過(guò)簡(jiǎn)便的一步法完成的。在本節(jié)中,氮化鈦-碳(TiN/C)納米復(fù)合材料被作為研究本征磁性和電磁性行為與結(jié)構(gòu)缺陷之間關(guān)系的具體實(shí)例。結(jié)果表明,溫度對(duì)于納米復(fù)合材料的結(jié)構(gòu)組成和性質(zhì)具有重要影響。此外,TiN/C納米復(fù)合材料不僅表現(xiàn)出明顯的靜態(tài)磁性而且具有顯著的動(dòng)態(tài)磁導(dǎo)率,相關(guān)于其在8-12 GHz的磁異常和介電共振。然而在TiN/C納米復(fù)合材料弱的靜態(tài)磁性和動(dòng)態(tài)磁性之間并無(wú)直接聯(lián)系。這意味著盡管所制備納米材料的電磁性能和結(jié)構(gòu)缺陷之間有一些內(nèi)在關(guān)系,但是靜態(tài)和動(dòng)態(tài)磁性的起源并不相同。此項(xiàng)工作在揭示納米結(jié)構(gòu)中靜態(tài)和動(dòng)態(tài)磁性的起源與結(jié)構(gòu)缺陷和微波電磁特性之間的內(nèi)在關(guān)系方面邁出了重要的一步,為設(shè)計(jì)缺陷機(jī)制的高效電磁波吸收體打開(kāi)了新的大門(mén)。4.在上述工作基礎(chǔ)上,采用簡(jiǎn)單的原位復(fù)合方式,以硝酸鎳、鈦酸納米管(NTA)和聚丙烯酰胺(PAM)為原材料,固定NTA和PAM的比例不變,逐漸增加硝酸鎳的含量,以三者混合物為前驅(qū)體在氨氣氣氛中900℃高溫煅燒,一步實(shí)現(xiàn)具有不同吸波機(jī)制的氮化鈦、鎳和碳三元納米復(fù)合材料的制備,得到一系列不同比例的Ni/TiN/C納米復(fù)合材料,并對(duì)其進(jìn)行結(jié)構(gòu)性能研究。結(jié)果表明,還原過(guò)程中得到的鎳納米粒子可以均勻的分散于復(fù)合材料中,與空白TiN/C復(fù)合材料相比,當(dāng)硝酸鎳的添加比例合適時(shí),Ni/TiN/C復(fù)合材料具有明顯增強(qiáng)的介電損耗和磁損耗,從而具有理想的吸波性能。以樣品S3為例,其RL值在4.5GHz處高達(dá)-28.4dB, RL-10的頻寬達(dá)到7.4 GHz。這歸因于多組分復(fù)合材料的多重吸波機(jī)制,多重界面極化效應(yīng)以及介電損耗與磁損耗之間較好的阻抗匹配。此外,碳的引入賦予材料較好的熱穩(wěn)定性和較低的密度,從而賦予其更好的環(huán)境適應(yīng)性,使得該復(fù)合材料在磁性,吸波及電磁屏蔽等領(lǐng)域均具有很好的應(yīng)用前景?傊,本研究采用簡(jiǎn)單的原位復(fù)合方法,成功實(shí)現(xiàn)一系列具有多重?fù)p耗機(jī)制的納米復(fù)合吸波材料的制備。通過(guò)將具有不同吸波機(jī)制的組分進(jìn)行原位復(fù)合,賦予材料更多的電磁波耗散機(jī)制,實(shí)現(xiàn)了對(duì)材料吸波性能的調(diào)控;各組分間良好的分散賦予它們更多與電磁波交互作用的機(jī)會(huì),從而使其表現(xiàn)出更加高效的吸波性能:不同組分間很好的相容性及界面效應(yīng),賦予材料額外的界面極化機(jī)制可以進(jìn)一步提高材料的電磁波吸收能力。該論文通過(guò)研究復(fù)合材料的組成、結(jié)構(gòu)、微觀缺陷等與其電磁性能之間的關(guān)系,不僅得到具有優(yōu)異綜合性能的電磁吸波材料,同時(shí)也為研究納米材料獨(dú)特的電磁波耗散機(jī)制提供了更多的研究思路和一定的理論和實(shí)驗(yàn)依據(jù)。
[Abstract]:Suction wave energy dissipation materials on the electromagnetic wave, mainly from the material of dielectric loss and magnetic loss and dielectric loss. Two, mainly refers to the electronic polarization medium, ion polarization or interfacial polarization effect absorption, attenuation of electromagnetic wave; magnetic loss is mainly through the hysteresis loss, domain wall resonance. The eddy current loss and residual loss such as magnetization mechanism to realize the electromagnetic wave absorption and attenuation. With the expanding application of absorbing wave material, the absorbing material requirements are increasingly demanding. The development of wide absorption band, thin thickness, light weight and strong ability to absorb electromagnetic wave absorbing material has attracted the attention of the world nano absorbing materials. As a new type of electromagnetic wave absorbing materials, not only has good electromagnetic wave absorption performance, with light weight, thin thickness, wide band advantage, become the hotspot research in electromagnetic field. However, because of the nano materials of small size, high surface energy, easy to agglomerate, therefore, realize the dispersion of nano materials and how good is the key problem in the application of research to solve. In addition, the ideal electromagnetic wave absorbing material to also have high magnetic loss factor (tan delta M= / R "R') and high dielectric loss factor (tan delta epsilon / epsilon R' E= R"). The absorbing agent single component, it is difficult to meet the high absorbing performance requirements, therefore, how to improve the synchronization of two sets of parameters for the preparation of high performance electromagnetic wave absorbing materials is very important. The work on the use in situ composite method simple, nano materials with different electromagnetic dissipation mechanism of in situ composite, prepared a series of nano composite absorbing materials. Hope can effectively improve regulation in the nano material dispersion and giving more material loss mechanism and its performance And in order to achieve optimal design of materials. Using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X ray diffraction (XRD), laser confocal Raman spectrometer instrument. The morphology of the nanocomposites obtained, structure characterization of the sample composition, morphology, influence the structure and micro defect on the magnetic and electromagnetic properties, on the basis of this, the regulation of its properties, has a good overall performance by electromagnetic wave absorbing materials. The main research contents and results are as follows: 1. in the liquid phase, Ni/ITO nano composite was prepared by in situ reduction method is simple with nickel chloride as nickel source, to complete the hydrazine hydrate as reducing agent and the solution is adjusted by NaOH pH. The as prepared nanocomposites, ITO nanoparticles not only as the isolation medium to prevent the magnetic nanoparticles group Together, but also gives mixing nano composite materials for electromagnetic wave absorption of the additional interface polarization mechanism. The results show that, compared with pure Ni or ITO nanoparticles, Ni/ITO nanocomposites exhibit markedly enhanced the absorbing performance. This is because the ITO nanoparticles can help non magnetic Ni nanoparticles in Ni/ITO nanocomposite the preparation of uniform dispersion, which is helpful for obtaining appropriate electromagnetic impedance matching and promote the interface polarization mechanism of additional enhanced microwave absorption. This study is expected in the preparation of advanced composite materials can control composition and magnetic properties of the new way of.2. in this study, lightweight microwave absorber Ni/C nano composite material is a mixture of calcined potential of nickel nitrate polyacrylamide in flowing ammonia atmosphere through simple method and preparation. And the preparation of Ni/C nano composite Inspect between electromagnetic properties and microstructure and composition of the material. The results of the study show that the prepared Ni/C nanocomposites with island shaped structure and is made of porous carbon matrix and the size is about hundreds of nanometer nickel nanoparticles and Ni/C nanocomposites exhibit electromagnetic performance of.Ni/C nano composite material with excellent is highly dependent on the temperature, and the wave absorbing properties in 600.C Ni/C nanocomposites are ideal. In smaller absorbing 2.3-7.0 thickness in the range of mm, the RL-20 dB (on the absorption of electromagnetic waves as high as 99%) the frequency range can reach 13.5 GHz. it is uniformly dispersed in the electromagnetic the impedance of special mesoporous structure and ideal composite material, and Ni nanoparticles in the carbon matrix. That is, the carbon matrix of Ni/C nano composite materials in existence to induce multiple dielectric In order to improve the polarization of electromagnetic loss properties of Ni/C nano composite material, and the presence of carbon in the composite improved thermal stability, chemical stability and dielectric properties but also can retain the intrinsic magnetic properties of.3.TiN/C metal Ni nano composite material is prepared with titanate nanotubes (H2Ti2O4 (OH) 2, (NTA) and polyacrylamide PAM) by one step to finish as raw material. In this section, titanium nitride (TiN/C) - carbon nano composite material as concrete examples of the intrinsic relationship between magnetic and electromagnetic behavior and structural defects. The results show that the temperature has an important influence on the structure of nano composite material composition and properties. In addition, TiN/C nano composite material not only shows obvious but also has dynamic static magnetic permeability, phase on the 8-12 GHz in the magnetic and dielectric resonance. However, in the TiN/C nano composites with weak Between the static and dynamic magnetic magnetic is not directly linked. This means that although the system has some inherent relationship between electromagnetic properties and structural defects of nano scale materials, but the origin of the static and dynamic properties are not the same. This work is inherent in demonstrating the relation between static and dynamic magnetic nanostructures in origin and structure defects and microwave electromagnetic characteristics has taken an important step, high efficient electromagnetic wave absorber design defect mechanism opens new doors for.4. on the basis of the above work, the in situ composite is simple, with nickel nitrate, titanate nanotubes (NTA) and polyacrylamide (PAM) as raw materials, the same fixed NTA and the ratio of PAM gradually, increase the content of nickel nitrate, with a mixture of the three as the precursor in ammonia atmosphere at the temperature of 900 DEG C high temperature calcining step implementation with different absorbing mechanism of titanium nitride, nickel and carbon three yuan Process for preparing nano composite materials, nano Ni/TiN/C composite materials have a series of different scale, and study the performance of the structure. The results show that the reduction process of nickel nanoparticles can be uniformly dispersed in the composite materials, compared with TiN/C composite, added when the proportion of nickel nitrate when appropriate, Ni/TiN/C composite materials with the electric loss and magnetic loss significantly enhanced dielectric, which has the absorbing properties of the ideal. Taking the sample S3 for example, the RL value at 4.5GHz up to -28.4dB, bandwidth of RL-10 to 7.4 GHz. due to the multiple wave absorbing mechanism of multi-component composite materials, good impedance matching between multiple interface effect and the dielectric loss and magnetic loss. In addition, the thermal stability of materials gives better and lower carbon density, giving it a better adaptability to the environment, so that the composite materials in magnetic absorbing Has a good application prospect and electromagnetic shielding and other fields. In this study, in-situ composite method is simple, the successful implementation of a series of multiple loss mechanism of nano composite absorbing material was prepared. The absorbing mechanism with different components in situ composite, gives the mechanism of electromagnetic wave dissipation materials more and the realization of the absorbing properties of materials for regulation; the components of good dispersion to give them more opportunities and the electromagnetic wave interaction, which shows the absorbing properties of more efficient: compatibility and good interface effect between different components, giving the interfacial polarization mechanism can further improve the electromagnetic additional material wave absorption material. The composition, study of the composite structure, the relationship between the micro defects and their electromagnetic properties, not only by electric magnetic with excellent performance At the same time, the absorbing material provides more research ideas and certain theoretical and experimental basis for the study of the unique electromagnetic wave dissipation mechanism of nanomaterials.
【學(xué)位授予單位】:河南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB383.1;TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 舒中俊,漆宗能,王佛松;聚合物阻燃新途徑——聚合物/粘土納米復(fù)合材料的特殊阻燃性[J];高分子通報(bào);2000年04期
2 李同年,周持興;聚酰胺/粘土納米復(fù)合材料[J];功能高分子學(xué)報(bào);2000年01期
3 王慧菊;1999年中國(guó)高分子納米復(fù)合材料研究與應(yīng)用文摘[J];化工新型材料;2000年02期
4 王德禧,李蘊(yùn)能,李蘭,孟麗萍;世界塑料新材料發(fā)展概況(2)——納米復(fù)合材料[J];塑料;2000年02期
5 鐘立;聚合物-粘土納米復(fù)合材料[J];益陽(yáng)師專(zhuān)學(xué)報(bào);2001年03期
6 F.Mazaleyrat ,L.K.Varga ,秦添艷;鐵磁納米復(fù)合材料[J];上海鋼研;2002年03期
7 胡源,汪少鋒,宋磊,陳祖耀,范維澄;聚合物/層狀粘土納米復(fù)合材料阻燃性能研究進(jìn)展[J];高分子材料科學(xué)與工程;2003年04期
8 劉書(shū)惠;《納米復(fù)合材料》[J];稀有金屬快報(bào);2003年02期
9 李新貴,曾劍峰,黃美榮;新型聚苯胺納米復(fù)合材料研究進(jìn)展[J];合成材料老化與應(yīng)用;2004年01期
10 劉立華;納米復(fù)合材料的應(yīng)用現(xiàn)狀及前景展望[J];唐山師范學(xué)院學(xué)報(bào);2004年02期
相關(guān)會(huì)議論文 前10條
1 范文娟;侯文靜;朱從山;周正發(fā);徐衛(wèi)兵;任鳳梅;;摻銅ZnS/MAA-co-HFBA纖維納米復(fù)合材料的制備與耐光降解性能[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
2 彭峰;翟蘭蘭;劉若望;袁繼新;;水性聚氨酯納米復(fù)合材料的研究進(jìn)展[A];2010年全國(guó)皮革化學(xué)品會(huì)議論文集[C];2010年
3 馮西橋;;聚合物——分層硅酸鹽納米復(fù)合材料有效模量的細(xì)觀力學(xué)分析[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年
4 魏連啟;余劍英;;酚醛樹(shù)脂/有機(jī)蛭石納米復(fù)合材料的制備與結(jié)構(gòu)表征[A];2004年中國(guó)納米技術(shù)應(yīng)用研討會(huì)論文集[C];2004年
5 王平;;阻燃聚合物/粘土納米復(fù)合材料研究進(jìn)展[A];2005年全國(guó)阻燃學(xué)術(shù)年會(huì)論文集[C];2005年
6 劉天西;;Nanoindentation在聚合物及其納米復(fù)合材料研究中的應(yīng)用[A];2005年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年
7 馮芳;劉預(yù);趙斌元;胡克鰲;;羥基磷灰石/殼聚糖納米復(fù)合材料的制備研究[A];中國(guó)復(fù)合材料學(xué)術(shù)研討會(huì)論文集[C];2005年
8 南江林;;阻燃聚合物/粘土納米復(fù)合材料研究進(jìn)展[A];2006全國(guó)阻燃學(xué)術(shù)年會(huì)論文集[C];2006年
9 祖麗華;李青山;;聚(丙烯腈-乙酸乙烯酯)/黃粘土納米復(fù)合材料研究[A];第六屆功能性紡織品及納米技術(shù)應(yīng)用研討會(huì)論文集[C];2006年
10 辛建泉;尚亞超;沈少雄;劉雪瑩;劉文濤;朱誠(chéng)身;何素芹;;尼龍1010/蛭石納米復(fù)合材料阻燃性能研究[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 宋玉春;納米復(fù)合材料能否風(fēng)行?[N];中國(guó)石化報(bào);2005年
2 李聞芝;納米復(fù)合材料產(chǎn)業(yè)化研討會(huì)將開(kāi)[N];中國(guó)化工報(bào);2004年
3 李偉;汽車(chē)用上納米復(fù)合材料部件[N];中國(guó)化工報(bào);2004年
4 渤海投資 周延;武漢塑料 突破60日均線壓制[N];證券時(shí)報(bào);2004年
5 唐偉家 吳汾 李茂彥;尼龍納米復(fù)合材料的開(kāi)發(fā)和市場(chǎng)[N];中國(guó)包裝報(bào);2008年
6 華凌;納米復(fù)合材料提升自充電池性能[N];中國(guó)化工報(bào);2014年
7 塑化;聚合物系納米復(fù)合材料發(fā)展前景廣闊[N];國(guó)際商報(bào);2003年
8 唐偉家 吳汾 李茂彥;尼龍納米復(fù)合材料的開(kāi)發(fā)和包裝應(yīng)用[N];中國(guó)包裝報(bào);2008年
9 本報(bào)記者 王海霞;納米復(fù)合材料將廣泛應(yīng)用到新能源領(lǐng)域[N];中國(guó)能源報(bào);2009年
10 劉霞;高效存儲(chǔ)氫的納米復(fù)合材料研制成功[N];科技日?qǐng)?bào);2011年
相關(guān)碩士學(xué)位論文 前10條
1 午海霞;聚合物/磷(膦)酸鋯納米復(fù)合材料結(jié)構(gòu)和性能研究[D];西南大學(xué);2010年
2 張慶鋒;聚對(duì)苯二甲酸乙二醇酯納米復(fù)合材料的制備及表征[D];浙江大學(xué);2004年
3 張樂(lè)樂(lè);納米復(fù)合材料中表面/界面效應(yīng)對(duì)動(dòng)應(yīng)力的影響[D];石家莊鐵道大學(xué);2011年
4 魯秀玲;聚乳酸/醋酸淀粉共混物及其納米復(fù)合材料的制備與高壓釜發(fā)泡[D];華南理工大學(xué);2012年
5 馬春華;石墨烯基二維納米復(fù)合材料的鋰電性能研究[D];東北大學(xué);2011年
6 史星偉;聚苯胺納米復(fù)合材料的合成和性能研究[D];蘭州理工大學(xué);2009年
7 張弘胤;尼龍6/高嶺土納米復(fù)合材料的制備及性能研究[D];中北大學(xué);2009年
8 王冬霞;兩種聚合方式對(duì)不同質(zhì)量比的納米復(fù)合材料力學(xué)性能的研究[D];佳木斯大學(xué);2009年
9 曹斌;多孔碳/金屬納米復(fù)合材料的制備及電磁性能研究[D];上海交通大學(xué);2010年
10 王洪濤;黏土/超細(xì)全硫化粉末橡膠/橡膠三元納米復(fù)合材料的制備與性能研究[D];北京化工大學(xué);2009年
,本文編號(hào):1747656
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/1747656.html