層狀磁電裝置的性能優(yōu)化及構(gòu)型設(shè)計
本文關(guān)鍵詞:層狀磁電裝置的性能優(yōu)化及構(gòu)型設(shè)計 出處:《蘭州大學》2016年碩士論文 論文類型:學位論文
更多相關(guān)文章: 磁電效應 磁場角度 溫度 二維 構(gòu)型設(shè)計
【摘要】:磁電效應是介質(zhì)受磁場作用產(chǎn)生電極化,或受電場作用產(chǎn)生磁極化的物理現(xiàn)象。近年來,由磁致伸縮材料和壓電材料組成的層狀復合磁電效應裝置因為極其顯著的磁電特性,逐漸引起了人們的注意,并被不斷應用于智能電子器件領(lǐng)域。目前,該領(lǐng)域的研究主要集中在提高裝置的磁電轉(zhuǎn)換效率,F(xiàn)已表明,影響轉(zhuǎn)換效率的因素主要包括:材料參數(shù)、外部磁場大小和驅(qū)動磁場頻率,然而鮮有研究從理論角度解釋磁場方向和外部環(huán)境溫度對磁電轉(zhuǎn)換效率的影響。為此,本論文從磁場角度、環(huán)境溫度和結(jié)構(gòu)構(gòu)型入手,建立了磁電效應多場耦合模型,優(yōu)化了層狀磁電裝置性能,同時提出了U型磁電裝置。具體內(nèi)容包括:首先,本論文基于彈性力學法,建立了的考慮磁場角度的層狀磁電效應模型,并對不同磁場角度下的磁電效應進行了理論預測,其預測結(jié)果與現(xiàn)有實驗吻合較好。結(jié)果表明,磁場角度對磁電轉(zhuǎn)化效率影響顯著。當交流磁場沿層狀磁電裝置長度方向時,存在一個最優(yōu)的直流磁場角度可以使得裝置獲得最大的磁電響應,直流磁場值越大,最優(yōu)角度越大。當交流磁場置于寬度方向時,無論直流磁場為何值,最優(yōu)的磁場角度總是在0o。但與前者不同,后者獲得最大磁電系數(shù)對應的最優(yōu)磁場卻隨著磁場角度的增加而逐漸減小。同時本文也發(fā)現(xiàn),裝置在共振頻率的磁電轉(zhuǎn)換效率大致為低頻下的100倍,且轉(zhuǎn)換效率隨磁場角度的變化規(guī)律保持不變。本論文結(jié)果表明,在實際生產(chǎn)設(shè)計中,最好的磁電器件設(shè)計方案是直流磁場保持與交流磁場共線。這樣既可以獲得最大的磁電系數(shù),又不至于施加一個過大的直流磁場。其次,本論文基于等效電路法,建立了考慮環(huán)境溫度影響的功能梯度型層狀自偏磁電效應模型。利用該模型得到的壓磁系數(shù)隨直流磁場的變化規(guī)律與現(xiàn)有的實驗結(jié)果保持一致。其預測結(jié)果顯示,在較低的預應力作用下(大約?50MPa),磁電轉(zhuǎn)換效率隨著溫度升高而減弱,而在較大的預應力作用下,則會隨著溫度升高而增強,但整體而言,較低的工作溫度和較小的預應力更有利于功能梯度型自偏磁電裝置的磁電轉(zhuǎn)換。最后,本論文從結(jié)構(gòu)構(gòu)型設(shè)計角度出發(fā),提出了U型磁電裝置,并首次建立了該構(gòu)型的理論模型。結(jié)果表明,磁致伸縮材料越長,壓電材料越短,越有利于U型裝置的磁電效應。同時,實驗結(jié)果顯示,當共振頻率為91kHz時,裝置獲得1.3V/cmOe的最大磁電轉(zhuǎn)換效率,而在低頻磁電系數(shù)也可達到0.225V/cmOe。總之,本論文從磁場角度、環(huán)境溫度和結(jié)構(gòu)構(gòu)型入手,完善和發(fā)展了磁電效應多場耦合模型,并提出了U型磁電裝置。本文的理論分析、數(shù)值仿真以及實驗工作豐富和發(fā)展了多場耦合磁電效應理論,同時也對層狀磁電裝置的技術(shù)改進和實際應用具有一定的指導意義。
[Abstract]:The magnetoelectric effect is the physical phenomenon that the medium is polarized by the action of the magnetic field or by the action of the electric field. In recent years, the magnetostrictive material composed of magnetostrictive materials and piezoelectric materials has attracted much attention due to its remarkable magnetoelectric properties, and has been applied in the field of intelligent electronic devices. At present, the research in this field is mainly focused on improving the efficiency of the magnetoelectric conversion of the device. It has been shown that the factors that affect the conversion efficiency include material parameters, external magnetic field size and driving magnetic field frequency. However, few studies have explained theoretically the influence of magnetic field direction and external ambient temperature on the efficiency of magnetoelectric conversion. For this reason, starting from magnetic field angle, environment temperature and structure configuration, this paper establishes a multi field coupling model of magnetoelectric effect, optimizes the performance of the layered magnetoelectric device, and puts forward the U type magnetoelectric device. The main contents are as follows: first, based on the elastic mechanics method, a layered magnetoelectric effect model considering magnetic field angle is established, and the magnetoelectric effect under different magnetic field angles is theoretically predicted. The prediction results are in good agreement with the existing experiments. The results show that the magnetic field angle has a significant influence on the efficiency of the magnetoelectric conversion. When the AC magnetic field is along the length of the layered magnetoelectric device, there is an optimal DC magnetic field angle, which can make the device get the largest magnetoelectric response. The larger the DC magnetic field is, the larger the optimal angle is. When the AC magnetic field is placed in the direction of width, the optimal angle of magnetic field is always at 0o regardless of the value of the DC magnetic field. But different from the former, the optimal magnetic field corresponding to the maximum magnetoelectric coefficient decreases with the increase of the angle of the magnetic field. At the same time, it is also found that the efficiency of magnetoelectric conversion at resonance frequency is about 100 times lower than that at low frequency, and the conversion efficiency keeps unchanged with the variation of magnetic field angle. The results of this paper show that in the actual production design, the best design of the magnetoelectric device is the co - line between the DC magnetic field and the AC magnetic field. In this way, the maximum magnetoelectric coefficient can be obtained, and a large DC magnetic field is not applied. Secondly, based on the equivalent circuit method, a functionally graded self biased magnetoelectric effect model with the influence of ambient temperature is established. The variation of the piezomagnetic coefficient with the DC magnetic field is consistent with the existing experimental results. The forecast results show that in the prestressed low (about 50MPa?), magnetoelectric conversion efficiency decreases with the increase of temperature, and the prestressing force is large, it will be enhanced with the increase of temperature, but on the whole, lower working temperature and smaller pre stress is more conducive to the function gradient type magnetoelectric conversion partial electric device. Finally, from the perspective of structural configuration design, the U magnetoelectric device is proposed, and the theoretical model of the configuration is established for the first time. The results show that the longer the magnetostrictive material is, the shorter the piezoelectric material is, the more it is beneficial to the magnetoelectric effect of the U type device. Meanwhile, the experimental results show that when the resonant frequency is 91kHz, the maximum magnetoelectric conversion efficiency of 1.3V/cmOe is achieved, while the low frequency magnetoelectric coefficient can also reach 0.225V/cmOe. In a word, starting with the magnetic field angle, ambient temperature and structure configuration, the multi field coupling model of the magnetoelectric effect is perfected and developed, and the U type magnetoelectric device is put forward. The theoretical analysis, numerical simulation and experimental work in this paper enrich and develop the theory of multi field coupled magnetoelectric effect, and also have some guiding significance for the improvement and practical application of the layered magnetoelectric device.
【學位授予單位】:蘭州大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TB33
【相似文獻】
相關(guān)期刊論文 前10條
1 仲崇貴;蔣青;江學范;方靖淮;;單相多鐵性磁電體磁電起源及耦合機理分析[J];材料導報;2009年03期
2 張耀榮;中國石油學會重磁電經(jīng)驗交流會在南京召開[J];新疆石油地質(zhì);1986年01期
3 ;港寧磁電工業(yè)發(fā)展有限公司[J];磁記錄材料;1989年02期
4 李擴社;李紅衛(wèi);嚴輝;于敦波;張國成;;磁電復合材料的研究進展[J];稀有金屬;2008年03期
5 李濤;賈利軍;張懷武;殷水明;陳世釵;;磁電復合材料的研究現(xiàn)狀及展望[J];電子元件與材料;2009年04期
6 軒敏杰;劉心宇;袁昌來;許積文;馬家峰;;鈮酸鉀鈉/鐵酸鈷銅多鐵性磁電復合材料的制備及性能研究[J];無機材料學報;2012年10期
7 劉樹貽;;用“圖文幻燈教學法”提高專業(yè)課教學質(zhì)量[J];有色金屬高教研究;1989年03期
8 ;磁電彈材料波動與斷裂的力學行為研究[J];中國科技獎勵;2013年06期
9 葉井紅;楊成韜;王磊;;磁電復合材料的制備及研究進展[J];材料導報;2009年03期
10 石敏;于桂洋;周國慶;蘇海林;許育東;伍光;王麗;陳綿松;于濤;;磁電復合材料的研究現(xiàn)狀及發(fā)展趨勢[J];金屬功能材料;2010年06期
相關(guān)會議論文 前10條
1 鄭鴻;楊成韜;;雙層磁電復合材料有限元仿真[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 馮巖;鄭世杰;;磁電彈性結(jié)構(gòu)自由振動的有限元仿真[A];慶祝中國力學學會成立50周年暨中國力學學會學術(shù)大會’2007論文摘要集(下)[C];2007年
3 陳明明;董春迎;;磁電彈介質(zhì)夾雜界面上的磁電平衡條件[A];北京力學會第17屆學術(shù)年會論文集[C];2011年
4 魏建萍;蘇先樾;;用積分平均方法求解磁電彈性空心圓柱體中波的軸向傳播[A];祝賀鄭哲敏先生八十華誕應用力學報告會——應用力學進展論文集[C];2004年
5 韓學禮;;磁電彈雙材料中三維位錯形成的耦合場分析(英文)[A];北京力學會第19屆學術(shù)年會論文集[C];2013年
6 董春迎;;磁電彈圓環(huán)板的三維自由振動分析[A];北京力學會第14屆學術(shù)年會論文集[C];2008年
7 權(quán)紅英;董麗杰;熊傳溪;;PVDF基夾層磁電復合材料的制備和性能研究[A];2005年全國高分子學術(shù)論文報告會論文摘要集[C];2005年
8 鐘獻詞;李顯方;;磁電彈性介質(zhì)中圓形裂紋誘導的完全場[A];第二屆全國壓電和聲波理論及器件技術(shù)研討會摘要集[C];2006年
9 程長征;丁昊;王大鵬;牛忠榮;;磁電彈材料反平面切口奇性分析[A];第16屆全國疲勞與斷裂學術(shù)會議會議程序冊[C];2012年
10 鄭涪升;馬爍懿;郭紅力;朱建國;;PMNPT/CFO磁電復合材料參數(shù)的模擬計算[A];全國材料科學中的數(shù)學應用研討會論文集[C];2010年
相關(guān)重要報紙文章 前8條
1 徐漢東;廬江出臺優(yōu)惠政策助推磁電產(chǎn)業(yè)發(fā)展[N];巢湖日報;2007年
2 楊立生邋劉宏偉;廬江磁電產(chǎn)業(yè)“明珠”閃耀[N];巢湖日報;2007年
3 記者 徐懿;時時創(chuàng)新提升企業(yè)抗風險能力[N];撫順日報;2009年
4 張安 程然;攻堅克難求發(fā)展[N];中煤地質(zhì)報;2011年
5 記者 潘少婷;嘉達磁電投2.8億元逆勢擴產(chǎn)[N];東莞日報;2012年
6 本報記者 陸本,
本文編號:1344540
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/1344540.html