多孔介質(zhì)內(nèi)煤礦低濃度瓦斯燃燒波多參數(shù)耦合時(shí)空演化機(jī)理
[Abstract]:Gas extraction is the main way to ensure the safety of coal mining. With the increase of coal production, gas extraction is increasing year by year. Coal mine gas is not only a strong greenhouse gas but also a high quality clean energy. However, the utilization rate of gas extraction is very low, nearly 60% of gas is discharged directly as exhaust gas. The main reason why a large amount of gas can not be used is to pull out the tile. Low concentration and frequent fluctuation of gas concentration and flow rate, so that conventional technology is difficult to achieve safe and efficient use. Porous medium combustion technology has the advantages of wide range of poor combustion limit, high combustion efficiency and low emission of pollutants, especially suitable for the use of low concentration gas. The study of engineering background is less, and the research means is single and the research content is not comprehensive. It is urgent to further study and improve it. In this paper, the multi parameter coupling spatio-temporal evolution mechanism of low concentration gas combustion wave in porous media is studied by means of field testing, theoretical analysis, experimental research and numerical simulation. The main research results are as follows: (1) The gas source characteristics of coal mine and the characteristics of porous media material have been studied. It is found that the difference of gas extraction location significantly affects the concentration of gas extraction, the flow and its fluctuation, and the scheme should fully refer to the conditions of the downhole extraction pipeline. The main components of Al2O3 and Si C foam ceramics are obtained by the experiment. The parameters such as diameter distribution, average pore size, density and porosity can provide theoretical basis for the parameters setting of porous medium combustion model and analysis of experimental data. (2) a study on the stationary combustion of low concentration gas in porous media was carried out. A new type of burner with filling bed in reticular foam ceramics to achieve combustion wave stationary combustion was proposed. It is found that the heat transfer characteristics in the packed bed of 13mm ball are closer to that of the 10PPI silicon carbide foam ceramics, and the small ball packed bed can be filled in the gap between the foam ceramics and the heat exchange tube, reducing the effect of the gap on the heat transfer in the porous medium, and the limit range of the stationary velocity in the new burner is smaller than that in the single foam ceramic area. The NOx emission at the outlet of the device first increased and then decreased, while the CO emission decreased first and then increased, but the HC emission decreased, and the HC emission of the new burner was between the single stack bed and the single foam ceramic burner emission. (3) the study on the non stationary combustion of the low concentration gas in the porous medium (Xiang Shangyou). The peak temperature and the propagation velocity of the combustion wave are stable and uniform, but the flue gas temperature in the outlet area decreases gradually. Considering the dispersion effect in the porous media, the propagation speed increases by nearly 19.8%, which is closer to the experimental measurement value, which is helpful to improve the accuracy of the model. The propagation speed and peak temperature increase when the wall heat dissipation increases. When the wall heat dissipation increases, the propagation velocity and peak temperature decrease, and the CO emission decreases gradually with the burning wave to the upstream, while the NO emission increases slowly and then maintains stability. The faster the peak temperature is, the faster the NO emission reaches stability. (4) the low concentration in porous media is carried out. In the experiment, the two dimensional temperature distribution in the burner is obtained through the arrangement of two dimensional temperature measurement points and the interpolation method. As the combustion waves propagate downstream, the flame appears inclined and ruptured, and the more the flame is closer to the exit instability, the more obvious the propagation speed increases when the gas velocity increases. When the gas concentration increases, the propagation speed decreases, and the two-dimensional temperature distribution obtained by the experiment provides a theoretical basis for the selection of the heat dissipation factor in the numerical model. With the increase of the diameter of the filled ball, the propagation speed increases gradually, but the propagation speed decreases gradually with the increase of the burner length. (5) the characteristics of the gas burning with low water content are studied. When the water content increases, the peak temperature and the NO emission are all linearly decreasing, while the CO emission and the water content are two function relations. When the gas flow velocity is 0.5m/s, the peak air velocity increases nearly 4.4 times. The burners should consider the impact force of the air velocity increasing when the burner is designed. With the increase of water content, the limit range of the fixed combustion is gradually changed. The velocity lower limit change is very small (0.15~0.2m/s), and the velocity upper limit decreases obviously; the peak reaction rate change rate is defined, and the significant effect of water vapor and the slight influence of the basic element reaction step are obtained. (6) the effect of burner scale on the low concentration gas combustion characteristics is studied. When the inlet diameter of the burner increases, the outlet NO emissions are reduced. Less, but CO emissions increase, with the burner length increasing, the outlet NO and CO emissions gradually decrease; when the burner is large, the speed limit presents fluctuating characteristics, and the greater the limit of the equivalent ratio is, the more obvious the limit of the burner design should take into consideration. (7) the low concentration gas combustion in the diffused burner is studied. When the gas concentration increases, the peak temperature increases linearly and the position of the combustion flame moves upstream. At the same time, the NO emission increases gradually, while the CO emission decreases first and then increases. The gas preheating can obviously increase the peak temperature of the combustion, which is beneficial to the position of the combustion flame to the upstream, and the NO emission is also significantly increased, determining the entrance tile. In the preheating degree, the thermal efficiency and the emission of pollutants should be synthetically measured. The research results can help to improve the mechanism of the multi parameter coupling time and space evolution in the porous medium, and based on the related research of the coal mine low concentration gas engineering background, it can provide theoretical support for the practical application of the porous medium combustion technology and the burner design. During the study, 9 papers were published, of which 4 were retrieved by SCI, 2 by EI, 1 for the first prize in science and technology progress at the provincial level, 4 for national invention patents and 5 for utility model patents.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD712
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱維耀;黃延章;;多孔介質(zhì)對(duì)氣-液相變過程的影響[J];石油勘探與開發(fā);1988年01期
2 司廣樹,姜培學(xué),李勐;單相流體在多孔介質(zhì)中的流動(dòng)和換熱研究[J];承德石油高等?茖W(xué)校學(xué)報(bào);2000年04期
3 李傳亮;多孔介質(zhì)的應(yīng)力關(guān)系方程——答周大晨先生[J];新疆石油地質(zhì);2002年02期
4 楊滿平,李治平,李允,王正茂;油氣儲(chǔ)層多孔介質(zhì)的變形理論及實(shí)驗(yàn)研究[J];天然氣工業(yè);2003年06期
5 劉澤佳,李錫夔,武文華;多孔介質(zhì)中化學(xué) 熱 水力 力學(xué)耦合過程本構(gòu)模型和數(shù)值模擬[J];巖土工程學(xué)報(bào);2004年06期
6 李鐸;宋雪琳;高志娟;代鋒剛;李方紅;;多孔介質(zhì)中鐵的吸附分配和遷移特征[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2007年04期
7 趙治國(guó);解茂昭;;傘噴油霧與熱多孔介質(zhì)相互作用的數(shù)值模擬[J];燃燒科學(xué)與技術(shù);2007年06期
8 李明春;田彥文;翟玉春;;多孔介質(zhì)反應(yīng)體系中的耦合擴(kuò)散效應(yīng)[J];化工學(xué)報(bào);2008年10期
9 王關(guān)晴;程樂鳴;鄭成航;駱仲泱;岑可法;;往復(fù)熱循環(huán)多孔介質(zhì)“超焓燃燒”特性[J];化工學(xué)報(bào);2009年02期
10 剛洪澤;劉金峰;牟伯中;;多孔介質(zhì)中微生物生長(zhǎng)行為和傳輸過程的數(shù)學(xué)模型研究進(jìn)展[J];化學(xué)與生物工程;2009年04期
相關(guān)會(huì)議論文 前10條
1 胥蕊娜;姜培學(xué);趙陳儒;黃寓理;;流體在微多孔介質(zhì)中的流動(dòng)研究[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
2 韋昌富;;多孔介質(zhì)力學(xué)理論及其應(yīng)用[A];第九屆全國(guó)巖土力學(xué)數(shù)值分析與解析方法討論會(huì)特邀報(bào)告[C];2007年
3 黃拳章;鄭小平;姚振漢;;含液多孔介質(zhì)力學(xué)問題的邊界元法[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
4 饒文濤;李本文;;多孔介質(zhì)燃燒技術(shù)工業(yè)應(yīng)用數(shù)值模擬研究[A];2010全國(guó)能源與熱工學(xué)術(shù)年會(huì)論文集[C];2010年
5 郁伯銘;員美娟;;多孔介質(zhì)中流體流動(dòng)的分形分析[A];中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];2008年
6 郭尚平;于大森;吳萬(wàn)娣;;生物臟器多孔介質(zhì)的孔徑分布和比面[A];全國(guó)第一屆生物力學(xué)學(xué)術(shù)會(huì)議論文匯編[C];1981年
7 劉志峰;趙剛;張有為;劉正鋒;李柯;王曉宏;;固體顆粒在逾滲多孔介質(zhì)中的吸附特性[A];第九屆全國(guó)滲流力學(xué)學(xué)術(shù)討論會(huì)論文集(一)[C];2007年
8 吳金隨;尹尚先;;顆粒堆積型多孔介質(zhì)內(nèi)孔喉模型的研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
9 黃拳章;鄭小平;姚振漢;;用邊界元法模擬含液多孔介質(zhì)的等效力學(xué)行為[A];北京力學(xué)會(huì)第十六屆學(xué)術(shù)年會(huì)論文集[C];2010年
10 王建省;王曉純;;具有流固熱耦合影響的可變形多孔介質(zhì)動(dòng)態(tài)物質(zhì)面分界特征[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年
相關(guān)重要報(bào)紙文章 前3條
1 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院 劉相東;多孔介質(zhì)干燥理論與應(yīng)用并行[N];中國(guó)化工報(bào);2007年
2 饒文濤;多孔介質(zhì)燃燒新技術(shù)及應(yīng)用[N];世界金屬導(dǎo)報(bào);2009年
3 饒文濤;新一代燃燒技術(shù)——多孔介質(zhì)燃燒[N];中國(guó)冶金報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 張賽;多孔材料毛細(xì)孔收縮熱質(zhì)傳遞及分形特性研究[D];昆明理工大學(xué);2015年
2 歐陽(yáng)小龍;多孔介質(zhì)傳熱局部非熱平衡效應(yīng)的基礎(chǔ)問題研究[D];清華大學(xué);2014年
3 苗同軍;裂縫型多孔介質(zhì)滲流特性的分形分析[D];華中科技大學(xué);2015年
4 李琪;懸浮微小顆粒在飽和多孔介質(zhì)中運(yùn)移特性的理論及試驗(yàn)研究[D];天津大學(xué);2014年
5 代華明;多孔介質(zhì)內(nèi)煤礦低濃度瓦斯燃燒波多參數(shù)耦合時(shí)空演化機(jī)理[D];中國(guó)礦業(yè)大學(xué);2016年
6 鄭佳宜;硅藻土基調(diào)濕材料內(nèi)熱濕遷移過程及其在建筑中的應(yīng)用研究[D];東南大學(xué);2015年
7 劉宏升;基于多孔介質(zhì)燃燒技術(shù)的超絕熱發(fā)動(dòng)機(jī)的基礎(chǔ)研究[D];大連理工大學(xué);2008年
8 林博穎;惰性多孔介質(zhì)內(nèi)的液霧燃燒[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年
9 張東輝;多孔介質(zhì)擴(kuò)散、導(dǎo)熱、滲流分形模型的研究[D];東南大學(xué);2003年
10 王恩宇;氣體燃料在漸變型多孔介質(zhì)中的預(yù)混燃燒機(jī)理研究[D];浙江大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 張洋;重金屬污染物在多孔介質(zhì)中的遷移模型與仿真[D];重慶大學(xué);2012年
2 戴振宇;部分填充多孔介質(zhì)通道內(nèi)流體流動(dòng)及傳熱特性研究[D];山東建筑大學(xué);2015年
3 陳龍;HPAM在多孔介質(zhì)中的成膠及運(yùn)移特性研究[D];中國(guó)石油大學(xué)(華東);2014年
4 楊君;具有表面輻射的部分填充多孔介質(zhì)的復(fù)合腔體內(nèi)高瑞利數(shù)自然對(duì)流傳熱研究[D];山東建筑大學(xué);2016年
5 蘆凱;部分填充復(fù)合多孔介質(zhì)腔體自然對(duì)流及傳熱研究[D];山東建筑大學(xué);2016年
6 雷長(zhǎng)征;飽和多孔介質(zhì)介觀尺度孔隙流的Lattice Boltzmann模擬[D];南京大學(xué);2015年
7 毛澤魁;多孔介質(zhì)森林模型中流場(chǎng)分布特征的研究[D];蘭州大學(xué);2016年
8 苗月興;基于多孔介質(zhì)的廂式載貨汽車氣動(dòng)減阻研究[D];吉林大學(xué);2016年
9 田恩輝;多孔介質(zhì)彈性動(dòng)力學(xué)理論通解的研究[D];遼寧科技大學(xué);2016年
10 房關(guān)考;多孔介質(zhì)通道發(fā)展傳熱的理論研究及數(shù)值分析[D];上海工程技術(shù)大學(xué);2016年
,本文編號(hào):2172465
本文鏈接:http://www.sikaile.net/kejilunwen/anquangongcheng/2172465.html