天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 安全工程論文 >

多孔介質(zhì)內(nèi)煤礦低濃度瓦斯燃燒波多參數(shù)耦合時(shí)空演化機(jī)理

發(fā)布時(shí)間:2018-08-08 17:13
【摘要】:瓦斯抽采是確保煤炭安全開采的主要方式,隨著煤炭產(chǎn)量增加,瓦斯抽采量逐年上升。煤礦瓦斯既是強(qiáng)溫室性氣體,又是優(yōu)質(zhì)清潔能源。然而,抽采瓦斯利用率一直很低,近60%瓦斯作為廢氣直接排放。大量瓦斯無(wú)法利用的主要原因是抽采瓦斯?jié)舛鹊、瓦斯(jié)舛群土髁坎▌?dòng)頻繁,以致常規(guī)技術(shù)很難實(shí)現(xiàn)安全高效利用。多孔介質(zhì)燃燒技術(shù)具有貧燃極限范圍寬、燃燒效率高和污染物排放低等優(yōu)點(diǎn),尤其適合低濃度瓦斯利用。目前,該技術(shù)主要局限于實(shí)驗(yàn)室理想工況研究,針對(duì)瓦斯工程背景研究較少,且研究手段單一、研究?jī)?nèi)容不全面,亟待進(jìn)一步深入研究和完善。本文采用現(xiàn)場(chǎng)測(cè)試、理論分析、實(shí)驗(yàn)研究和數(shù)值模擬相結(jié)合的方法,研究了多孔介質(zhì)內(nèi)低濃度瓦斯燃燒波多參數(shù)耦合時(shí)空演化機(jī)理。主要研究成果如下:(1)開展了煤礦瓦斯氣源特性和多孔介質(zhì)材料特征研究。發(fā)現(xiàn)瓦斯抽采地點(diǎn)差異顯著影響著抽采瓦斯的濃度、流量及其波動(dòng)強(qiáng)弱,瓦斯利用時(shí)工況調(diào)節(jié)方案應(yīng)充分參照井下抽采管路情況制定;實(shí)驗(yàn)獲得了Al2O3和Si C泡沫陶瓷的主要成分、孔徑分布、平均孔徑、密度、孔隙率等參數(shù),可為多孔介質(zhì)燃燒模型參數(shù)設(shè)置和實(shí)驗(yàn)數(shù)據(jù)分析提供理論依據(jù)。(2)開展了多孔介質(zhì)內(nèi)低濃度瓦斯駐定燃燒研究。文中提出一種在網(wǎng)狀泡沫陶瓷中填充堆積床來實(shí)現(xiàn)燃燒波駐定的新型燃燒器;研究發(fā)現(xiàn)13mm小球堆積床內(nèi)的傳熱特性和10PPI碳化硅泡沫陶瓷更加接近;小球堆積床可填充于泡沫陶瓷和換熱管間空隙,減少空隙對(duì)多孔介質(zhì)內(nèi)傳熱的影響;新型燃燒器內(nèi)駐定速度極限范圍相比單一泡沫陶瓷區(qū)時(shí)縮小;隨瓦斯速度增加,燃燒器出口NOx排放量先增大后減小,而CO排放量卻先減小后增大,但HC排放量一直減少,且新型燃燒器HC排放量介于單一堆積床和單一泡沫陶瓷燃燒器排放量之間。(3)開展了多孔介質(zhì)內(nèi)低濃度瓦斯非駐定燃燒研究(向上游)。隨燃燒波向上游傳播,峰值溫度和燃燒波傳播速度都維持穩(wěn)定均勻,而出口區(qū)煙氣溫度卻逐漸降低;考慮多孔介質(zhì)內(nèi)彌散效應(yīng)后,傳播速度提高了近19.8%,更貼近實(shí)驗(yàn)測(cè)量值,有助于提高模型準(zhǔn)確性;隨瓦斯?jié)舛仍黾?傳播速度和峰值溫度均提高,而瓦斯速度增加時(shí),傳播速度降低,峰值溫度增高;當(dāng)壁面散熱強(qiáng)度增加時(shí),傳播速度和峰值溫度均降低;隨燃燒波向上游傳播,CO排放量逐漸降低,而NO排放量先緩慢增加再維持穩(wěn)定,且峰值溫度越低,NO排放量越快達(dá)到穩(wěn)定。(4)開展了多孔介質(zhì)內(nèi)低濃度瓦斯非駐定燃燒研究(向下游)。實(shí)驗(yàn)時(shí)通過二維溫度測(cè)點(diǎn)布置,結(jié)合插值法獲得了燃燒器內(nèi)二維溫度分布;隨燃燒波向下游傳播,火焰出現(xiàn)傾斜、破裂等不穩(wěn)定現(xiàn)象,且火焰越靠近出口不穩(wěn)定特性越明顯;當(dāng)瓦斯速度增加時(shí),傳播速度增大,而瓦斯?jié)舛仍龃髸r(shí),傳播速度卻減小;實(shí)驗(yàn)獲得的二維溫度分布可為數(shù)值模型中散熱系數(shù)選擇提供理論依據(jù);隨填充小球直徑增加,傳播速度逐漸增大,而隨燃燒器長(zhǎng)度增加,傳播速度卻逐漸減小。(5)研究了含水低濃度瓦斯燃燒特性。當(dāng)含水量增大時(shí),峰值溫度和NO排放量均呈線性下降趨勢(shì),而CO排放量與含水量卻呈二次函數(shù)關(guān)系;瓦斯流速為0.5m/s時(shí),峰值氣流速度增加近4.4倍,燃燒器設(shè)計(jì)時(shí)應(yīng)考慮氣流速度增大帶來的沖擊力;隨含水量增大,駐定燃燒極限范圍逐漸變窄,其中速度下限變化很小(0.15~0.2m/s),而速度上限明顯下降;定義了峰值反應(yīng)速率變化率,并以此獲得了水汽顯著影響和輕微影響基元反應(yīng)步。(6)研究了燃燒器尺度對(duì)低濃度瓦斯燃燒特性影響。當(dāng)燃燒器入口直徑增大時(shí),出口NO排放量減少,而CO排放量卻增加;隨燃燒器長(zhǎng)度增大,出口NO和CO排放量均逐漸減小;燃燒器大型化時(shí),速度極限呈現(xiàn)波動(dòng)特征,且當(dāng)量比越大速度極限波動(dòng)越明顯,燃燒器設(shè)計(jì)應(yīng)考慮尺度對(duì)工況極限的影響。(7)研究了漸擴(kuò)型燃燒器中低濃度瓦斯燃燒特性。當(dāng)瓦斯?jié)舛仍黾訒r(shí),峰值溫度呈線性增長(zhǎng),穩(wěn)燃火焰位置向上游移動(dòng),同時(shí),NO排放量逐漸增大,而CO排放量呈先減小后增大趨勢(shì);瓦斯預(yù)熱能明顯提高燃燒峰值溫度,有利于穩(wěn)燃火焰位置移向上游,且NO排放量也顯著上升,確定入口瓦斯預(yù)熱程度時(shí),應(yīng)綜合衡量熱效率和污染物排放。研究成果有助于完善多孔介質(zhì)內(nèi)燃燒波多參數(shù)耦合時(shí)空演化機(jī)理,而基于煤礦低濃度瓦斯工程背景開展的相關(guān)研究,可為多孔介質(zhì)燃燒技術(shù)實(shí)際應(yīng)用和燃燒器設(shè)計(jì)提供理論支撐。課題研究期間發(fā)表學(xué)術(shù)論文9篇,其中SCI檢索4篇,EI檢索2篇,獲得省部級(jí)科技進(jìn)步一等獎(jiǎng)1項(xiàng),授權(quán)國(guó)家發(fā)明專利4項(xiàng),實(shí)用新型專利5項(xiàng)。
[Abstract]:Gas extraction is the main way to ensure the safety of coal mining. With the increase of coal production, gas extraction is increasing year by year. Coal mine gas is not only a strong greenhouse gas but also a high quality clean energy. However, the utilization rate of gas extraction is very low, nearly 60% of gas is discharged directly as exhaust gas. The main reason why a large amount of gas can not be used is to pull out the tile. Low concentration and frequent fluctuation of gas concentration and flow rate, so that conventional technology is difficult to achieve safe and efficient use. Porous medium combustion technology has the advantages of wide range of poor combustion limit, high combustion efficiency and low emission of pollutants, especially suitable for the use of low concentration gas. The study of engineering background is less, and the research means is single and the research content is not comprehensive. It is urgent to further study and improve it. In this paper, the multi parameter coupling spatio-temporal evolution mechanism of low concentration gas combustion wave in porous media is studied by means of field testing, theoretical analysis, experimental research and numerical simulation. The main research results are as follows: (1) The gas source characteristics of coal mine and the characteristics of porous media material have been studied. It is found that the difference of gas extraction location significantly affects the concentration of gas extraction, the flow and its fluctuation, and the scheme should fully refer to the conditions of the downhole extraction pipeline. The main components of Al2O3 and Si C foam ceramics are obtained by the experiment. The parameters such as diameter distribution, average pore size, density and porosity can provide theoretical basis for the parameters setting of porous medium combustion model and analysis of experimental data. (2) a study on the stationary combustion of low concentration gas in porous media was carried out. A new type of burner with filling bed in reticular foam ceramics to achieve combustion wave stationary combustion was proposed. It is found that the heat transfer characteristics in the packed bed of 13mm ball are closer to that of the 10PPI silicon carbide foam ceramics, and the small ball packed bed can be filled in the gap between the foam ceramics and the heat exchange tube, reducing the effect of the gap on the heat transfer in the porous medium, and the limit range of the stationary velocity in the new burner is smaller than that in the single foam ceramic area. The NOx emission at the outlet of the device first increased and then decreased, while the CO emission decreased first and then increased, but the HC emission decreased, and the HC emission of the new burner was between the single stack bed and the single foam ceramic burner emission. (3) the study on the non stationary combustion of the low concentration gas in the porous medium (Xiang Shangyou). The peak temperature and the propagation velocity of the combustion wave are stable and uniform, but the flue gas temperature in the outlet area decreases gradually. Considering the dispersion effect in the porous media, the propagation speed increases by nearly 19.8%, which is closer to the experimental measurement value, which is helpful to improve the accuracy of the model. The propagation speed and peak temperature increase when the wall heat dissipation increases. When the wall heat dissipation increases, the propagation velocity and peak temperature decrease, and the CO emission decreases gradually with the burning wave to the upstream, while the NO emission increases slowly and then maintains stability. The faster the peak temperature is, the faster the NO emission reaches stability. (4) the low concentration in porous media is carried out. In the experiment, the two dimensional temperature distribution in the burner is obtained through the arrangement of two dimensional temperature measurement points and the interpolation method. As the combustion waves propagate downstream, the flame appears inclined and ruptured, and the more the flame is closer to the exit instability, the more obvious the propagation speed increases when the gas velocity increases. When the gas concentration increases, the propagation speed decreases, and the two-dimensional temperature distribution obtained by the experiment provides a theoretical basis for the selection of the heat dissipation factor in the numerical model. With the increase of the diameter of the filled ball, the propagation speed increases gradually, but the propagation speed decreases gradually with the increase of the burner length. (5) the characteristics of the gas burning with low water content are studied. When the water content increases, the peak temperature and the NO emission are all linearly decreasing, while the CO emission and the water content are two function relations. When the gas flow velocity is 0.5m/s, the peak air velocity increases nearly 4.4 times. The burners should consider the impact force of the air velocity increasing when the burner is designed. With the increase of water content, the limit range of the fixed combustion is gradually changed. The velocity lower limit change is very small (0.15~0.2m/s), and the velocity upper limit decreases obviously; the peak reaction rate change rate is defined, and the significant effect of water vapor and the slight influence of the basic element reaction step are obtained. (6) the effect of burner scale on the low concentration gas combustion characteristics is studied. When the inlet diameter of the burner increases, the outlet NO emissions are reduced. Less, but CO emissions increase, with the burner length increasing, the outlet NO and CO emissions gradually decrease; when the burner is large, the speed limit presents fluctuating characteristics, and the greater the limit of the equivalent ratio is, the more obvious the limit of the burner design should take into consideration. (7) the low concentration gas combustion in the diffused burner is studied. When the gas concentration increases, the peak temperature increases linearly and the position of the combustion flame moves upstream. At the same time, the NO emission increases gradually, while the CO emission decreases first and then increases. The gas preheating can obviously increase the peak temperature of the combustion, which is beneficial to the position of the combustion flame to the upstream, and the NO emission is also significantly increased, determining the entrance tile. In the preheating degree, the thermal efficiency and the emission of pollutants should be synthetically measured. The research results can help to improve the mechanism of the multi parameter coupling time and space evolution in the porous medium, and based on the related research of the coal mine low concentration gas engineering background, it can provide theoretical support for the practical application of the porous medium combustion technology and the burner design. During the study, 9 papers were published, of which 4 were retrieved by SCI, 2 by EI, 1 for the first prize in science and technology progress at the provincial level, 4 for national invention patents and 5 for utility model patents.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD712

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 朱維耀;黃延章;;多孔介質(zhì)對(duì)氣-液相變過程的影響[J];石油勘探與開發(fā);1988年01期

2 司廣樹,姜培學(xué),李勐;單相流體在多孔介質(zhì)中的流動(dòng)和換熱研究[J];承德石油高等?茖W(xué)校學(xué)報(bào);2000年04期

3 李傳亮;多孔介質(zhì)的應(yīng)力關(guān)系方程——答周大晨先生[J];新疆石油地質(zhì);2002年02期

4 楊滿平,李治平,李允,王正茂;油氣儲(chǔ)層多孔介質(zhì)的變形理論及實(shí)驗(yàn)研究[J];天然氣工業(yè);2003年06期

5 劉澤佳,李錫夔,武文華;多孔介質(zhì)中化學(xué) 熱 水力 力學(xué)耦合過程本構(gòu)模型和數(shù)值模擬[J];巖土工程學(xué)報(bào);2004年06期

6 李鐸;宋雪琳;高志娟;代鋒剛;李方紅;;多孔介質(zhì)中鐵的吸附分配和遷移特征[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2007年04期

7 趙治國(guó);解茂昭;;傘噴油霧與熱多孔介質(zhì)相互作用的數(shù)值模擬[J];燃燒科學(xué)與技術(shù);2007年06期

8 李明春;田彥文;翟玉春;;多孔介質(zhì)反應(yīng)體系中的耦合擴(kuò)散效應(yīng)[J];化工學(xué)報(bào);2008年10期

9 王關(guān)晴;程樂鳴;鄭成航;駱仲泱;岑可法;;往復(fù)熱循環(huán)多孔介質(zhì)“超焓燃燒”特性[J];化工學(xué)報(bào);2009年02期

10 剛洪澤;劉金峰;牟伯中;;多孔介質(zhì)中微生物生長(zhǎng)行為和傳輸過程的數(shù)學(xué)模型研究進(jìn)展[J];化學(xué)與生物工程;2009年04期

相關(guān)會(huì)議論文 前10條

1 胥蕊娜;姜培學(xué);趙陳儒;黃寓理;;流體在微多孔介質(zhì)中的流動(dòng)研究[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年

2 韋昌富;;多孔介質(zhì)力學(xué)理論及其應(yīng)用[A];第九屆全國(guó)巖土力學(xué)數(shù)值分析與解析方法討論會(huì)特邀報(bào)告[C];2007年

3 黃拳章;鄭小平;姚振漢;;含液多孔介質(zhì)力學(xué)問題的邊界元法[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

4 饒文濤;李本文;;多孔介質(zhì)燃燒技術(shù)工業(yè)應(yīng)用數(shù)值模擬研究[A];2010全國(guó)能源與熱工學(xué)術(shù)年會(huì)論文集[C];2010年

5 郁伯銘;員美娟;;多孔介質(zhì)中流體流動(dòng)的分形分析[A];中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];2008年

6 郭尚平;于大森;吳萬(wàn)娣;;生物臟器多孔介質(zhì)的孔徑分布和比面[A];全國(guó)第一屆生物力學(xué)學(xué)術(shù)會(huì)議論文匯編[C];1981年

7 劉志峰;趙剛;張有為;劉正鋒;李柯;王曉宏;;固體顆粒在逾滲多孔介質(zhì)中的吸附特性[A];第九屆全國(guó)滲流力學(xué)學(xué)術(shù)討論會(huì)論文集(一)[C];2007年

8 吳金隨;尹尚先;;顆粒堆積型多孔介質(zhì)內(nèi)孔喉模型的研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年

9 黃拳章;鄭小平;姚振漢;;用邊界元法模擬含液多孔介質(zhì)的等效力學(xué)行為[A];北京力學(xué)會(huì)第十六屆學(xué)術(shù)年會(huì)論文集[C];2010年

10 王建省;王曉純;;具有流固熱耦合影響的可變形多孔介質(zhì)動(dòng)態(tài)物質(zhì)面分界特征[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年

相關(guān)重要報(bào)紙文章 前3條

1 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院 劉相東;多孔介質(zhì)干燥理論與應(yīng)用并行[N];中國(guó)化工報(bào);2007年

2 饒文濤;多孔介質(zhì)燃燒新技術(shù)及應(yīng)用[N];世界金屬導(dǎo)報(bào);2009年

3 饒文濤;新一代燃燒技術(shù)——多孔介質(zhì)燃燒[N];中國(guó)冶金報(bào);2009年

相關(guān)博士學(xué)位論文 前10條

1 張賽;多孔材料毛細(xì)孔收縮熱質(zhì)傳遞及分形特性研究[D];昆明理工大學(xué);2015年

2 歐陽(yáng)小龍;多孔介質(zhì)傳熱局部非熱平衡效應(yīng)的基礎(chǔ)問題研究[D];清華大學(xué);2014年

3 苗同軍;裂縫型多孔介質(zhì)滲流特性的分形分析[D];華中科技大學(xué);2015年

4 李琪;懸浮微小顆粒在飽和多孔介質(zhì)中運(yùn)移特性的理論及試驗(yàn)研究[D];天津大學(xué);2014年

5 代華明;多孔介質(zhì)內(nèi)煤礦低濃度瓦斯燃燒波多參數(shù)耦合時(shí)空演化機(jī)理[D];中國(guó)礦業(yè)大學(xué);2016年

6 鄭佳宜;硅藻土基調(diào)濕材料內(nèi)熱濕遷移過程及其在建筑中的應(yīng)用研究[D];東南大學(xué);2015年

7 劉宏升;基于多孔介質(zhì)燃燒技術(shù)的超絕熱發(fā)動(dòng)機(jī)的基礎(chǔ)研究[D];大連理工大學(xué);2008年

8 林博穎;惰性多孔介質(zhì)內(nèi)的液霧燃燒[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年

9 張東輝;多孔介質(zhì)擴(kuò)散、導(dǎo)熱、滲流分形模型的研究[D];東南大學(xué);2003年

10 王恩宇;氣體燃料在漸變型多孔介質(zhì)中的預(yù)混燃燒機(jī)理研究[D];浙江大學(xué);2004年

相關(guān)碩士學(xué)位論文 前10條

1 張洋;重金屬污染物在多孔介質(zhì)中的遷移模型與仿真[D];重慶大學(xué);2012年

2 戴振宇;部分填充多孔介質(zhì)通道內(nèi)流體流動(dòng)及傳熱特性研究[D];山東建筑大學(xué);2015年

3 陳龍;HPAM在多孔介質(zhì)中的成膠及運(yùn)移特性研究[D];中國(guó)石油大學(xué)(華東);2014年

4 楊君;具有表面輻射的部分填充多孔介質(zhì)的復(fù)合腔體內(nèi)高瑞利數(shù)自然對(duì)流傳熱研究[D];山東建筑大學(xué);2016年

5 蘆凱;部分填充復(fù)合多孔介質(zhì)腔體自然對(duì)流及傳熱研究[D];山東建筑大學(xué);2016年

6 雷長(zhǎng)征;飽和多孔介質(zhì)介觀尺度孔隙流的Lattice Boltzmann模擬[D];南京大學(xué);2015年

7 毛澤魁;多孔介質(zhì)森林模型中流場(chǎng)分布特征的研究[D];蘭州大學(xué);2016年

8 苗月興;基于多孔介質(zhì)的廂式載貨汽車氣動(dòng)減阻研究[D];吉林大學(xué);2016年

9 田恩輝;多孔介質(zhì)彈性動(dòng)力學(xué)理論通解的研究[D];遼寧科技大學(xué);2016年

10 房關(guān)考;多孔介質(zhì)通道發(fā)展傳熱的理論研究及數(shù)值分析[D];上海工程技術(shù)大學(xué);2016年



本文編號(hào):2172465

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/anquangongcheng/2172465.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶91ec1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com