深部開采復合高位巷優(yōu)化布置及次生災害分析
發(fā)布時間:2018-05-08 10:59
本文選題:復合高位巷 + 優(yōu)化布置; 參考:《中國礦業(yè)大學》2014年碩士論文
【摘要】:瓦斯災害嚴重制約了礦井安全生產(chǎn),并且隨著開采深度增加,災害程度越演越烈。對于深部高瓦斯、高地應力、高突出危險性及低透氣性首采煤層的瓦斯治理,成為深部礦井的研究熱點。另外當前我國經(jīng)濟下行壓力增大,實現(xiàn)瓦斯治理工程的高效利用,,也是礦井節(jié)能增效的重要途徑。 復合高位巷技術(shù)是在常規(guī)走向高抽巷的基礎上,通過對高位巷優(yōu)化布置及次生災害的有效控制,實現(xiàn)高位巷“一巷兩用”:前期準備階段,掩護突出煤層煤巷掘進;后期回采階段,治理采空區(qū)及鄰近層瓦斯。作為一種新型復合技術(shù),復合高位巷技術(shù)實現(xiàn)了一措并舉,是對深部礦井瓦斯治理和節(jié)能增效的有益嘗試。 本文以平煤四礦三水平己15-31040首采面為研究背景,采用理論分析、物理模擬、數(shù)值分析及工業(yè)應用等方法,針對復合高位巷層位、內(nèi)錯間距、采空區(qū)瓦斯治理效能及次生災害發(fā)生特點展開,主要取得以下成果: 首先,分析了采場裂隙形成及瓦斯運移規(guī)律,得出:采場裂隙分為離層裂隙和貫穿裂隙,分別為瓦斯提供積聚空間和運移通道;覆巖內(nèi)瓦斯存在介質(zhì)滲流和浮升擴散兩種運移方式,采空區(qū)回風側(cè)離層區(qū)是高位抽采工程最佳施工地點。 其次,通過相似實驗和FLAC3D數(shù)值模擬對復合高位巷合理布置進行優(yōu)化,得出:該工作面每推進21m,頂板發(fā)生一次周期來壓,高位巷結(jié)構(gòu)失穩(wěn)與頂板破壞同步發(fā)生;根據(jù)統(tǒng)計計算、頂板下沉量、裂隙發(fā)育狀態(tài),結(jié)合頂板巖性,確定高位巷位于己15煤頂板16m,細粒砂巖下部,巷道頂部沿砂質(zhì)泥巖頂板掘進;高位巷掩護煤巷同步掘進中,水平應力集中是造成巷道破壞的主要原因,通過對高位巷與煤巷內(nèi)錯0m、5m、10m、20m間距下水平應力、頂板下沉等數(shù)據(jù)的分析,確定高位巷與煤巷同步掘進合理內(nèi)錯間距20m。 最后,建立U+I和U型CFD模型研究復合高位巷瓦斯治理效果和次生災害發(fā)生特點,得出:高位抽采下,采空區(qū)近底板附近出現(xiàn)瓦斯降低區(qū),瓦斯帶狀分布出現(xiàn)上移現(xiàn)象;回風側(cè)瓦斯?jié)舛认陆?2%,高位巷對上隅角瓦斯具有明顯治理效果。氧氣沿傾向分布均勻;采空區(qū)散熱帶和氧化帶沿走向出現(xiàn)明顯加寬后移,其中機巷側(cè)氧化帶后移35m,寬度增加29.2%,加寬后移最為嚴重。復合高位巷在治理瓦斯的同時也加劇了諸如采空區(qū)自燃、爆炸等次生災害的發(fā)生,加快工作面推進速度是預防采空區(qū)次生災害發(fā)生的重要措施,為保證正常生產(chǎn),工作面推進速度需提高27.8%左右。當工作面推進速度提高受限時,應加強采空區(qū)管理并采取相應的次生災害治理措施。
[Abstract]:Gas disaster seriously restricts mine safety production, and with the increase of mining depth, the disaster degree becomes more and more severe. For deep high gas, high ground stress, high outburst risk and low permeability of the first coal seam gas treatment, become a deep mine research hotspot. In addition, it is also an important way to save energy and increase efficiency by increasing the downward pressure of economy in our country and realizing the efficient utilization of gas control project. The technology of compound high level roadway is based on the conventional high drawing roadway, through the optimization arrangement of high level roadway and the effective control of secondary disaster, the "one roadway dual purpose" of high level roadway can be realized: in the early preparation stage, the coal roadway driving with outburst coal seam can be covered; In the later stage of mining, gas in goaf and adjacent strata will be controlled. As a new type of compound technology, the technology of compound high level roadway has realized the same measures, which is a beneficial attempt to control gas in deep mine and to save energy and increase efficiency. In this paper, based on the research background of 15-31040 first mining face of No. 3 level in the fourth coal mine, theoretical analysis, physical simulation, numerical analysis and industrial application are adopted, aiming at the interfault spacing of compound high roadway. The efficiency of gas control and the characteristics of secondary disasters in goaf are carried out. The main achievements are as follows: First of all, the formation of stope fissure and the law of gas migration are analyzed. It is concluded that the stope fissure can be divided into two categories: the separated layer fissure and the penetrating fissure, which provide gas accumulation space and migration channel respectively; There are two migration modes of gas in overburden rock: medium seepage and floatation diffusion. Secondly, through similar experiment and FLAC3D numerical simulation to optimize the reasonable arrangement of compound high roadway, it is concluded that every 21 m advance of this face, the roof comes under periodic pressure, and the instability of the structure of the high roadway and the roof failure occur synchronously; according to the statistical calculation, Roof subsidence, crack development state, combined with roof lithology, it is determined that the high roadway is located at 16m of coal roof, the bottom of fine-grained sandstone, the top of roadway is driven along sand mudstone roof, and the high roadway covers coal roadway at the same time. Horizontal stress concentration is the main cause of roadway failure. By analyzing the data of horizontal stress and roof subsidence at the distance of 0 mmm ~ 5 m ~ 10 m ~ (20 m) between high and high roadway and coal roadway, it is determined that the reasonable internal dislocation distance is 20 m for simultaneous driving of high level roadway and coal roadway. Finally, the U I and U type CFD models are established to study the effect of gas treatment and the characteristics of secondary disasters in compound high level roadway. It is concluded that under high mining, there is a gas reduction area near the floor of goaf, and the distribution of gas belt appears upward; The gas concentration at the return air side is reduced by 42, and the gas in the upper corner of the high lane has obvious control effect. The oxygen distribution is uniform along the tendency, and the radiating zone and oxidation zone in goaf are obviously widened and moved backward along the strike, in which the oxidation zone in the side of the roadway moves back 35 m, the width increases 29.2 m, and the widening backward shift is the most serious. The compound high level roadway also intensifies the occurrence of secondary disasters such as spontaneous combustion and explosion in goaf while controlling gas. Speeding up the speed of working face advance is an important measure to prevent secondary disaster in goaf, in order to ensure normal production, The speed of working face advance needs to be increased by about 27.8%. The goaf management should be strengthened and the corresponding secondary disaster control measures should be taken when the speed of working face is limited.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TD712
【參考文獻】
相關期刊論文 前10條
1 張春;題正義;李宗翔;;采空區(qū)孔隙率的空間立體分析研究[J];長江科學院院報;2012年06期
2 林府進;徐貴發(fā);董鋼鋒;;松軟突出煤層順層長鉆孔成孔技術(shù)研究[J];礦業(yè)安全與環(huán)保;2006年02期
3 周廷揚;;高壓水力割縫提高瓦斯抽采率的技術(shù)研究[J];礦業(yè)安全與環(huán)保;2010年S1期
4 鄒熹正;對壓力拱假說的新解釋[J];礦山壓力;1989年01期
5 張春雷,李太任,熊琦華;煤巖結(jié)構(gòu)與煤體裂隙分布特征的研究[J];煤田地質(zhì)與勘探;2000年05期
6 程國軍;回采工作面順層鉆孔抽放瓦斯研究[J];煤炭工程;2005年03期
7 馬健;丁日佳;;煤炭企業(yè)在國民經(jīng)濟和社會發(fā)展中的地位[J];煤炭技術(shù);2007年06期
8 陳登紅;李德忠;;上隅角瓦斯積聚問題探究[J];煤炭技術(shù);2009年02期
9 魏勝田;;高位鉆場穿層鉆孔預抽上覆被保護層瓦斯技術(shù)[J];煤炭科學技術(shù);2007年06期
10 文虎;綜放工作面采空區(qū)煤自燃過程的動態(tài)數(shù)值模擬[J];煤炭學報;2002年01期
本文編號:1861118
本文鏈接:http://www.sikaile.net/kejilunwen/anquangongcheng/1861118.html
最近更新
教材專著