載貨汽車危險狀態(tài)辨識及監(jiān)測預(yù)警研究
本文選題:載貨汽車 切入點:危險辨識 出處:《吉林大學(xué)》2014年博士論文 論文類型:學(xué)位論文
【摘要】:隨著我國國民經(jīng)濟的快速增長,道路交通運輸行業(yè)也進入快速發(fā)展的成長期,由于運輸行業(yè)的發(fā)展不足以及相關(guān)部門監(jiān)管能力的匱乏,我國交通安全形勢日益嚴(yán)峻。近幾年,道路運輸群死群傷的重特大惡性事故頻繁發(fā)生。據(jù)統(tǒng)計,,我國道路交通事故由于生產(chǎn)經(jīng)營運輸車輛導(dǎo)致的傷亡比例較高,營運載貨汽車的運輸安全問題已成為道路交通運輸亟待解決的關(guān)鍵問題之一。 國家中長期科學(xué)技術(shù)發(fā)展規(guī)劃明確將“重點開發(fā)交通事故預(yù)防預(yù)警、應(yīng)急處理技術(shù)”列為交通領(lǐng)域優(yōu)先研究的技術(shù)之一,2008年交通部《國家道路交通安全科技行動計劃》中也將“車輛安全性能及新技術(shù)、裝備應(yīng)用、營運車輛運行安全監(jiān)控技術(shù)與裝備”等列為國家重點科技研究任務(wù)。2011年,“十二五”科技重大專項“交通運輸領(lǐng)域關(guān)鍵技術(shù)與示范”也逐漸在各省展開。針對日益嚴(yán)峻的道路運輸形勢,以德國為首的歐共體,以及美國和日本等車輛生產(chǎn)發(fā)達(dá)國家在車輛安全動態(tài)監(jiān)控預(yù)警方面進行了大量的研究,并結(jié)合車聯(lián)網(wǎng)技術(shù)對車輛行駛狀態(tài)進行實時集中的監(jiān)控,在危險狀態(tài)預(yù)警、車-路協(xié)調(diào)系統(tǒng)等方面取得了長足的進步。由此可見,車輛在途狀態(tài)的監(jiān)控和危險狀態(tài)預(yù)警是全球在車輛安全方面的主要研究課題之一。作為造成重特大交通事故比例較高的營運載貨汽車,對其在途狀態(tài)的監(jiān)測預(yù)警更成為重中之重,車輛危險狀態(tài)辨識技術(shù)作為監(jiān)控預(yù)警技術(shù)的基礎(chǔ),也成為車輛安全研究的前沿技術(shù)和熱點。 本文結(jié)合國家對營運載貨汽車安全監(jiān)控技術(shù)與裝備方面的技術(shù)需求,依托國家863高技術(shù)研究發(fā)展計劃項目《營運載貨汽車安全性能檢測與預(yù)警集成技術(shù)及裝置》,重點研究車輛在途危險狀態(tài)辨識方法。首先通過分析導(dǎo)致交通事故的幾種典型危險狀態(tài),確定需要檢測車輛的行駛狀態(tài)參數(shù),通過在一汽解放賽龍CA1169PK2L2EA80重型貨車上加裝傳感器采集相應(yīng)的車輛行駛狀態(tài)參數(shù)信息;其次,通過分析傳感器采集車輛狀態(tài)數(shù)據(jù),提出能夠直接由單參數(shù)來判斷車輛危險狀態(tài)的方法;再次,通過對車輛懸架振動特性以及停車距離計算模型的分析,提出基于多個車輛狀態(tài)參數(shù)來判斷車輛載荷危險狀態(tài)和行車間距危險狀態(tài)方法;最后,基于虛擬儀器軟件,以解放賽龍貨車為車輛模型開發(fā)車輛危險狀態(tài)監(jiān)測預(yù)警仿真系統(tǒng),系統(tǒng)可完成車輛故障預(yù)設(shè)仿真、試驗室車輛危險狀態(tài)監(jiān)測預(yù)警試驗,并且保留系統(tǒng)參數(shù)編輯能力、車輛狀態(tài)信號實時采集程序,能夠?qū)崿F(xiàn)車載實時監(jiān)控和試驗室車輛危險狀態(tài)的監(jiān)控預(yù)警仿真的雙重需求。研究為載貨汽車行駛狀態(tài)監(jiān)測預(yù)警閾值的設(shè)定提供了理論基礎(chǔ),也為車輛監(jiān)控預(yù)警車載系統(tǒng)的開發(fā)提供了上位機軟件程序和試驗室仿真研究平臺。論文研究的主要工作及結(jié)論包含以下5方面: 1.車輛危險狀態(tài)分析和行駛狀態(tài)信息采集 系統(tǒng)分析了車輛行駛過程中容易導(dǎo)致事故的車輛超速、超載、行駛縱向間距不足、機械故障和爆胎等典型危險狀態(tài)因素,從而確定了制動系中的制動管路壓力、制動蹄片溫度、蹄片磨損程度、制動燈、轉(zhuǎn)向燈狀態(tài)、輪胎溫度與壓力、車輛載荷狀態(tài)和車速等容易快速引發(fā)惡性交通事故的狀態(tài)參數(shù)。通過在解放賽龍車貨車上安裝相應(yīng)的傳感器來獲取以上參數(shù)信息,并使用單片機采集和存儲傳感器信號數(shù)據(jù)。 2.基于單參數(shù)的危險狀態(tài)判定方法研究 通過對傳感器獲取車輛狀態(tài)參數(shù)信息的特征分析,結(jié)合試驗車輛結(jié)構(gòu)性能要求,車輛行駛環(huán)境(路面情況及天氣溫度)綜合因素的影響,研究了基于單個傳感器參數(shù)數(shù)據(jù)的載貨汽車危險狀態(tài)判定方法,其中包括載貨汽車行駛速度、輪胎溫度壓力、轉(zhuǎn)向/制動燈、制動蹄片溫度及磨損異常狀態(tài)辨識,確定了以上危險狀態(tài)判定閾值。 3.基于懸架振動特性的載荷危險狀態(tài)辨識方法研究 建立了二自由度車輛后懸架振動模型,以路面不平度作為激勵輸入,分析不同行駛速度,不同裝載狀態(tài)下車輛懸架動行程和懸架動態(tài)載荷間關(guān)系,提出了采用測量懸架變形量來計算車輛載荷狀態(tài)的方法;基于此方法開發(fā)了帶過載保護的拉線式載荷狀態(tài)檢測裝置,分別采用Levenberg-Marquardt和EMD方法對載荷狀態(tài)傳感器信號進行了處理,分析了兩種方法在動態(tài)載荷信號處理方面可行性和實用性,并確定使用EMD方法作為動態(tài)載荷信號的處理方法;結(jié)合路面環(huán)境、車輛行駛速度,載荷狀態(tài)參數(shù)信息,提出了使用水平質(zhì)心位置監(jiān)測來判斷車輛偏載,貨物脫落滑移等載荷危險狀態(tài)的方法;使用試驗車輛在可靠性路面及八種特殊路面上車輛不同工況(行駛車速,載荷狀態(tài))下進行了載荷狀態(tài)檢測試驗和水平質(zhì)心位置監(jiān)測試驗,實現(xiàn)了車輛水平質(zhì)心的測定,驗證了載荷狀態(tài)檢測的準(zhǔn)確性和水平質(zhì)心位置監(jiān)測的可行性。 4.基于停車距離的多參數(shù)危險狀態(tài)辨識方法研究 建立停車距離分析模型,分析影響停車距離的主要因素包括駕駛?cè)俗陨硪蛩兀囕v狀態(tài)參數(shù),制動器結(jié)構(gòu)參數(shù)和道路環(huán)境因素。通過對駕駛員制動反應(yīng)時間、制動器起作用時間、制動管路壓力、制動蹄片溫度、路面附著系數(shù)等制動距離的影響參數(shù)的分析,基于制動力學(xué)分析建立停車距離計算公式,并通過空擋怠速、滑行試驗來標(biāo)定停車距離計算模型中車輛內(nèi)外阻力參數(shù)。最后在不同工況下進行了仿真試驗和實車制動試驗,驗證了停車距離計算模型的可行性和準(zhǔn)確性。 5.車輛危險狀態(tài)監(jiān)測及預(yù)警仿真系統(tǒng)的設(shè)計 基于虛擬儀器軟件開發(fā)了危險狀態(tài)監(jiān)測及預(yù)警系統(tǒng),系統(tǒng)包含前面板(人機交互界面)和程序框圖兩大部分;其中軟件程序的編寫完成了行駛狀態(tài)信息輸入、單參數(shù)危險狀態(tài)判定、多參數(shù)危險狀態(tài)辨識、監(jiān)測結(jié)果顯示及預(yù)警四個功能;車輛行駛狀態(tài)信息輸入程序保留數(shù)據(jù)采集卡實時信號輸入、車輛運行狀態(tài)信息數(shù)據(jù)庫輸入、車輛運行狀態(tài)信號仿真輸入三種輸入方式。數(shù)據(jù)庫數(shù)據(jù)和仿真信號輸入可實現(xiàn)試驗室預(yù)設(shè)車輛危險狀態(tài)仿真試驗,同時預(yù)留的串口信號實時導(dǎo)入模塊也可做為實車危險狀態(tài)監(jiān)測預(yù)警系統(tǒng)的上位機程序進行擴展開發(fā)。 綜上所述,本文研究的載貨汽車危險狀態(tài)辨識方法及設(shè)計開發(fā)的車輛危險狀態(tài)監(jiān)測及預(yù)警仿真系統(tǒng)為車輛在途行駛狀態(tài)安全監(jiān)測預(yù)警提供了一種新的方法,對預(yù)防載貨汽車引發(fā)惡性道路交通事故具有著重要的社會意義和應(yīng)用價值。
[Abstract]:With the rapid growth of China's national economy, the road transportation industry has entered a period of rapid growth and development, due to lack of insufficient development of the transport industry and the relevant departments of the regulatory capacity, China's traffic safety situation is increasingly serious. In recent years, road transport Qunsiqunshang major accidents occurred frequently. According to statistics, the road traffic accident because of the production and operation of vehicle transport resulting in a higher proportion of casualties, safe transport truck operations has become one of the key problems of road transportation needs to be solved.
The national long-term science and technology development plan clearly will focus on the development of traffic accident prevention and early warning, emergency treatment technology "as one of the priority research field of transportation technology, the Ministry of transportation in 2008" national road traffic safety technology plan of action will also be "> in vehicle safety performance and new technology application, equipment, operating vehicle running safety monitoring technology and equipment" as a national key scientific research task in.2011, "12th Five-Year" major science and technology project "key technology and demonstration field of transportation gradually in the provinces. For the increasingly grim situation of road transport, led by Germany, the European community, and vehicle production in developed countries such as the USA and Japan in vehicle dynamic safety monitoring and early warning a lot of study, combined with the car networking technology on the vehicle running state monitoring real-time centralized, in danger warning, vehicle The road coordinate system and other aspects have made great progress. Thus, the vehicle state in transit monitoring and early warning of dangerous state is one of the major research topics in vehicle safety aspects of the world. As a result, a higher proportion of serious traffic accident truck operations, the more become the priority among priorities in transit monitoring and warning state. The vehicle risk status identification technology as the basis for monitoring and warning technology, vehicle safety has become a research hot technologies.
In this paper, combined with the state of operation of truck safety monitoring technology and equipment technical requirements, relying on the National 863 high technology research and development program of the safety performance of truck operations "detection and early warning technology and integrated device >, focus on vehicle in transit risk identification method. Firstly, several typical risk state analysis lead to traffic accidents. To determine the running state of the vehicle parameters need to be detected, by adding sensors to collect corresponding vehicle state parameter information in FAW heavy truck Thordon CA1169PK2L2EA80; secondly, through the analysis of sensor data of vehicle state, which can directly by the single parameter method to estimate the vehicle risk status; thirdly, through the analysis and calculation model on the vibration characteristics of vehicle suspension the parking space and distance, is proposed to determine vehicle load risk based on multiple vehicle state parameters State and distance of the dangerous state method; finally, based on virtual instrument software, the FAW truck for a vehicle model is developed for vehicle risk monitoring and early warning system can complete vehicle simulation system, fault simulation laboratory vehicle presupposition, risk monitoring and early warning test, and keep the system parameters editing capabilities, real-time signal acquisition program of vehicle state, demand to achieve the monitoring and Simulation of the vehicle real-time monitoring and laboratory vehicle risk status. The study provides a theoretical basis for the truck running state monitoring and warning threshold, also provides a simulation platform of PC software program and test room for the development of the vehicle monitoring and early warning system of vehicle. The main work of the paper and the conclusion includes the following 5 aspects:
1. vehicle hazard state analysis and travel state information collection
Analysis of vehicle speed, easily lead to accidents during the running process of the vehicle overloading, driving the longitudinal distance of insufficient mechanical failure and burst of typical risk factors, so as to determine the brake line pressure brake system, brake shoe wear degree, temperature, brake lights, turn lights, tire temperature and pressure parameters of the vehicle load, vehicle speed and easy fast state of vicious traffic accident. To obtain the above parameter information through the installation of the corresponding sensor in the FAW car truck, and the use of single-chip sensor signal acquisition and storage of data.
2. method for determining risk state based on single parameter
The characteristics of obtaining vehicle condition information analysis of sensor, combined with the structural performance requirements of the vehicle, the vehicle driving environment (road and weather) factors, studies the method to determine the truck dangerous state of single sensor parameter based on data, including truck speed, tire temperature and pressure, steering / braking lamp brake shoe wear, temperature and abnormal state identification, to determine the above risk threshold.
3. identification method of load risk state based on vibration characteristics of suspension
A two DOF vehicle suspension vibration model with road roughness as excitation input, analysis of different speeds and under different loading conditions of vehicle suspension travel and dynamic load between the suspension, proposed the method of measuring suspension to calculate vehicle load state deformation; based on this method, the cable type load state detection device with overload protection, respectively using Levenberg-Marquardt and EMD method to load sensor signal processing and analysis of two methods in the dynamic load signal processing feasibility and practicability, and determined to use the EMD method as a method of dynamic load signal; combined with the road condition, vehicle speed, load condition information, put forward to determine the partial load vehicles use level centroid position monitoring method of goods off slip load of dangerous state; use The test vehicle reliability in pavement and eight special road vehicles under different working conditions (speed, load) under the load test and the level of the centroid position monitoring test, the determination of the level of vehicle centroid, verify the feasibility of load state detection accuracy and the level of centroid position monitoring.
4. multi parameter identification method based on parking distance
The establishment of parking distance analysis model, analysis of the main factors affecting the parking distance including the driver's own factors, vehicle state parameters, brake structure parameters and road environment factors. Based on the driver's brake reaction time, brakes, brake line pressure, brake temperature, analysis of influence parameters of pavement adhesion coefficient of braking distance. Analysis of the establishment of the stopping distance calculation formula based on the mechanical brake, and the neutral idle taxi test to calibrate the stopping distance calculation of vehicle internal and external resistance parameters in the model. Finally, the simulation test and vehicle braking test under different conditions, verify the feasibility and accuracy of the model calculation of the stopping distance.
Design of 5. vehicle hazard monitoring and early warning simulation system
The virtual instrument software development risk monitoring and warning system based on the system includes front panel (man-machine interface) and program block diagram of two parts; the software program to complete the driving information input, single parameter risk judgment, multi parameter risk state identification, monitoring and early warning function showed four vehicles; state information input program preserves the data acquisition card real-time signal input, the running state of the vehicle information database input, enter the vehicle running state signal simulation of three input modes. The database data and the simulation signal input can achieve laboratory preset vehicle risk status simulation test, and real time serial signal into the module for monitoring and early warning system can also be used as a vehicle of danger the PC program for the expansion of development.
In summary, this paper studies the truck risk identification method and the design and development of the vehicle hazard monitoring and warning simulation system for vehicle safety monitoring and warning state in transit provides a new method, which has the important social significance and application value for the prevention of road traffic accidents caused by malignant truck.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:U492.81;U463.6
【參考文獻】
相關(guān)期刊論文 前10條
1 陳廣華;鞠娜;楊飛;李建偉;;基于粘貼式應(yīng)變傳感器的車輛超載監(jiān)測系統(tǒng)[J];北京航空航天大學(xué)學(xué)報;2011年04期
2 汪衛(wèi)東;世界汽車安全技術(shù)的最新發(fā)展[J];汽車工業(yè)研究;2004年04期
3 李冬臨;林土勝;;輪胎加速度傳感器的汽車制動性能監(jiān)測分析[J];傳感器與微系統(tǒng);2006年12期
4 胡啟國;王文靜;孫寶賢;雷旭東;;基于MATLAB的非獨立懸架振動特性分析[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2012年01期
5 張健,雷雨成,衛(wèi)修敬;領(lǐng)從蹄式鼓式制動器制動力矩計算方法研究[J];長沙交通學(xué)院學(xué)報;2001年03期
6 徐華中;黃麗萍;;基于LabVIEW和DSP串口的多通道電機參數(shù)采集系統(tǒng)[J];電子測量技術(shù);2011年04期
7 祝志慧;孫云蓮;季宇;;基于EMD和SVM的短期負(fù)荷預(yù)測[J];高電壓技術(shù);2007年05期
8 王云鵬;趙韓濤;王俊喜;李世武;張飛軍;;基于共用信息平臺的高速公路系統(tǒng)集成框架研究[J];公路交通科技;2006年02期
9 樓少敏;王永達(dá);許滄粟;;基于路面不平度自功率譜密度函數(shù)計算國際不平度指數(shù)的研究[J];公路交通科技;2007年08期
10 羅獻燕;趙勝兵;陳鶇;;Simulink在求解結(jié)構(gòu)動力方程的運用以及優(yōu)勢[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2008年S1期
相關(guān)博士學(xué)位論文 前1條
1 趙雷剛;發(fā)動機臺架試驗過程實時監(jiān)測與預(yù)警方法研究[D];武漢理工大學(xué);2010年
本文編號:1631604
本文鏈接:http://www.sikaile.net/kejilunwen/anquangongcheng/1631604.html