天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 機電工程論文 >

基于HVD-AR的斜齒輪故障特征提取及損傷過程分析

發(fā)布時間:2019-02-17 12:23
【摘要】:齒輪箱是一種應(yīng)用面較廣的基礎(chǔ)性傳動部件,主要用于改變轉(zhuǎn)速和傳遞動力。由于其本身結(jié)構(gòu)復雜,工作環(huán)境惡劣等原因,齒輪箱容易出現(xiàn)故障。因此,對齒輪箱進行疲勞損傷監(jiān)測與診斷是非常必要的;谡駝有盘柕凝X輪箱故障特征提取,其主要任務(wù)是從采集到的信號中提取可用的故障特征信息,前提條件是準確分離故障振動信號,根本目的是提取故障特征信息。本文是基于斜齒輪臺架疲勞試驗,以采集到的斜齒輪整個疲勞壽命周期內(nèi)的實時振動信號為研究對象,提出有效的振動信號降噪方法和反映齒輪損傷程度的特征指標,并將特征指標的變化趨勢應(yīng)用到斜齒輪的疲勞損傷過程的分析中。本文首先以斜齒輪單齒嚙合的簡化動力學模型為基礎(chǔ),研究了斜齒輪的振動信號機理。基于信號機理,分析了斜齒輪典型故障及其對應(yīng)的振動信號特征,并回顧了常用的齒輪故障特征指標。針對斜齒輪振動信號的非線性、非平穩(wěn)性的特征,本文提出希爾伯特振動分解(Hilbert Vibration Decomposition,HVD)與自回歸濾波器(AR Filter)相結(jié)合的振動信號降噪方法HVD-AR,其中對HVD的信號重構(gòu)方法和AR模型階次確定的相干峭度(Correlation Kurtosis,CK)準則進行了重點討論,并通過實測點蝕損傷過程振動信號包絡(luò)譜驗證該降噪方法的有效性。根據(jù)故障對齒輪振動信號頻譜邊頻帶影響的機理,將高低階嚙合頻率的邊頻帶分開考慮,提出高低階嚙合頻率邊頻帶估計的兩個特征指標(4和(4,并將其應(yīng)用到實測振動信號的分析中。考慮現(xiàn)有的斜齒輪臺架試驗條件,擬定疲勞壽命試驗方案,并對試驗結(jié)果進行簡要分析,同時獲取整個壽命過程的振動信號數(shù)據(jù),為其后的斜齒輪疲勞損傷過程的分析提供必要的數(shù)據(jù)支撐。采用斜齒輪的典型損傷過程(齒面點蝕和輪齒斷齒)的全壽命振動信號以數(shù)據(jù)驅(qū)動方式驗證了HVD-AR信號降噪方法的有效性,并將特征指標(4和(4的變化趨勢與常用的特征指標RMS、峭度值、ER和FM4進行對比分析,驗證其對于斜齒輪損傷過程分析的實用性。結(jié)果表明,HVD-AR能夠有效降噪斜齒輪振動信號,特征值(4和(4的變化趨勢能夠有效反映斜齒輪的疲勞損傷過程,能夠及早發(fā)現(xiàn)早期的微弱故障。
[Abstract]:Gearbox is a kind of basic transmission component with wide application, which is mainly used to change speed and transfer power. The gearbox is prone to malfunction because of its complicated structure and bad working environment. Therefore, it is necessary to monitor and diagnose the fatigue damage of gearbox. The main task of gearbox fault feature extraction based on vibration signal is to extract the available fault feature information from the collected signal. The precondition is to separate the fault vibration signal accurately, and the fundamental purpose is to extract the fault feature information. Based on the fatigue test of helical gear bench, this paper takes the real time vibration signal of helical gear in the whole fatigue life cycle as the research object, and puts forward an effective noise reduction method of vibration signal and characteristic index to reflect the damage degree of gear. The change trend of characteristic index is applied to the analysis of fatigue damage process of helical gear. In this paper, the vibration signal mechanism of helical gear is studied based on the simplified dynamic model of single tooth meshing of helical gear. Based on the signal mechanism, the typical fault of helical gear and its corresponding vibration signal characteristics are analyzed, and the commonly used gear fault characteristic indexes are reviewed. Aiming at the nonlinearity and nonstationarity of helical gear vibration signal, this paper presents a new method, HVD-AR, which combines Hilbert vibration decomposition (Hilbert Vibration Decomposition,HVD) with autoregressive filter (AR Filter). The signal reconstruction method of HVD and the coherent kurtosis (Correlation Kurtosis,CK) criterion determined by the order of AR model are discussed in detail, and the effectiveness of the method is verified by measuring the envelope spectrum of vibration signal in the process of pitting damage. According to the mechanism of the influence of fault on the frequency band of gear vibration signal, the edge frequency band of high and low order meshing frequency is considered separately, and two characteristic indexes of edge band estimation of high and low order meshing frequency are presented (4 and 4, respectively). It is applied to the analysis of measured vibration signal. Considering the existing helical gear bench test conditions, the fatigue life test scheme is drawn up, and the test results are analyzed briefly, and the vibration signal data of the whole life process are obtained at the same time. It provides necessary data support for the analysis of the fatigue damage process of helical gears. Using the lifetime vibration signal of the typical damage process of helical gear (tooth surface pitting and gear tooth breaking), the effectiveness of HVD-AR signal denoising method is verified by data-driven method. The change trend of characteristic index (4 and 4) is compared with RMS, kurtosis, ER and FM4, to verify its practicability for the analysis of helical gear damage process. The results show that HVD-AR can effectively reduce the vibration signal of helical gears, and the variation trends of eigenvalues (4 and 4) can effectively reflect the fatigue damage process of helical gears, and early weak faults can be detected as early as possible.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH132.41

【參考文獻】

相關(guān)期刊論文 前10條

1 呂宏強;武志斐;王鐵;谷豐收;;基于AR-MCKD的齒輪點蝕故障特征提取[J];機械傳動;2017年03期

2 崔偉成;許愛強;李偉;孟凡磊;;基于擬合誤差最小化原則的奇異值分解降噪有效秩階次確定方法[J];振動與沖擊;2017年03期

3 王道勇;王鐵;張瑞亮;張瑞;喬金維;;振動光飾齒輪接觸疲勞壽命對比試驗研究[J];機械傳動;2017年01期

4 李寶慶;程軍圣;吳占濤;楊宇;;基于ASTFA和PMMFE的齒輪故障診斷方法[J];振動工程學報;2016年05期

5 方軍強;周新聰;趙旋;;基于EEMD和分形維數(shù)的船用齒輪箱故障診斷[J];船海工程;2016年04期

6 吳定海;張培林;楊望燦;齊蘊光;;基于雙樹復小波的重疊塊閾值降噪方法[J];振動與沖擊;2016年10期

7 王鵬飛;胡建中;;基于LMD的包絡(luò)譜特征值在齒輪箱故障診斷中的應(yīng)用研究[J];機電工程;2016年05期

8 馮志鵬;秦嗣峰;;基于Hilbert振動分解和高階能量算子的行星齒輪箱故障診斷研究[J];振動與沖擊;2016年05期

9 孟宗;王亞超;胡猛;;基于改進LMD和IED-SampEn的齒輪故障特征提取方法[J];機械工程學報;2016年05期

10 雷建波;;正交面齒輪副動力學仿真及疲勞壽命分析[J];熱能動力工程;2016年02期

相關(guān)博士學位論文 前1條

1 李文良;計及齒面摩擦的斜齒輪傳動動態(tài)特性研究[D];哈爾濱工業(yè)大學;2013年

,

本文編號:2425161

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/2425161.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9620b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com