可調(diào)式液力變矩器泵渦間隙對(duì)性能的影響研究
[Abstract]:The guide vane adjustable hydraulic torque converter is the key component of the high power hydraulic mechanical speed regulation system. At present, the similar design method is mainly used, that is, the similar amplification or reduction is carried out on the basis of the basic torque converter. Because of its narrow application field and few researches on its design theory and method, there is no corresponding design theory and criterion in the design of new torque converter. For example, the size of the clearance between the pump wheel and the turbine has an effect on the performance and pressure fluctuation of the torque converter. The relative clearance of the pump vortex (the ratio of the clearance to the diameter of the circulating circle) is between 0.2% and 1.6% in several existing torque converter products. In this paper, Blade Gen is used to model Y615 double turbine adjustable torque converter, Turbo Grid is used to mesh each impeller runner, and CFX computational fluid dynamics software is used for numerical calculation and post-processing. The pressure pulsation in front and back of pump blades and centrifugal turbine blades is studied by setting pressure monitoring points. Then, by changing the inlet radius of centrifugal turbine and changing the vortex clearance of the pump, the influence of changing the vortex clearance on the performance and pressure pulsation of hydraulic torque converter is analyzed. The interference effect between pump wheel and centrifugal turbine is the most significant among all adjacent impeller pairs. The interference effect between other impeller pairs can be neglected. The number of vane of pump wheel is less (15 pieces), and the outlet pressure of the blade is high in front and low in back side. The outlet pressure of pump wheel is staggered in the direction of the circle, which causes periodic impact on the turbine downstream. When the liquid flow enters the turbine passage, it will impact the inlet edge of the turbine blade and appear high pressure area. When the turbine blade is close to the pump wheel blade, the gap between the two blades is very small, resulting in a blocking effect. In addition, there is a low-speed low-pressure turbulence region on the back of the pump wheel. This turbulent region produces irregular flow fields and absorbs pressure pulsations from outside. The internal pressure pulsation is also different from that of the external pressure pulsation. The most important factor to consider when setting the pump vortex clearance is the size of the high pressure area at the front end of the turbine. The vortex clearance will affect the performance parameters of hydraulic torque converter, such as the efficiency curve and the torque coefficient of pump wheel, which also determine the pressure pulsation. The smaller the vortex clearance, the stronger the static and static interference effect and the greater the pressure pulsation. However, if the vortex clearance is large, the flow of pump wheel can be diffused fully in the vane free flow channel, and the inlet pressure of centrifugal turbine will be more uniform in the circumferential direction, the pressure pulsation effect will be reduced, and the efficiency will be improved. But the larger vortex clearance will reduce the torque coefficient of the pump wheel. And in practice the vane passage too long will also produce reflux and other phenomena. Therefore, the selection of pump vortex clearance needs to consider various factors.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH137.332
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧延?xùn)|;袁壽其;裴吉;張金鳳;黃茜;王文杰;;泵葉輪出口寬度對(duì)蝸殼內(nèi)壓力脈動(dòng)強(qiáng)度的影響[J];哈爾濱工程大學(xué)學(xué)報(bào);2017年07期
2 張琳;施衛(wèi)東;張德勝;石磊;;基于大渦模擬的混流泵不穩(wěn)定流動(dòng)數(shù)值研究[J];排灌機(jī)械工程學(xué)報(bào);2017年04期
3 張德勝;劉俊龍;耿琳琳;石磊;張俊杰;;斜流泵小流量工況壓力脈動(dòng)數(shù)值模擬與實(shí)驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年02期
4 牟介剛;劉劍;鄭水華;谷云慶;代東順;馬藝;;隔舌對(duì)離心泵壓力脈動(dòng)特性及內(nèi)部流場(chǎng)的影響[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年12期
5 牟介剛;代東順;谷云慶;劉劍;鄭水華;吳登昊;;仿生蝸殼結(jié)構(gòu)對(duì)離心泵隔舌區(qū)域脈動(dòng)特性的影響[J];上海交通大學(xué)學(xué)報(bào);2016年09期
6 牟介剛;劉劍;谷云慶;代東順;鄭水華;馬藝;;單、雙隔舌對(duì)離心泵徑向力特性及內(nèi)部流場(chǎng)的影響[J];振動(dòng)與沖擊;2016年11期
7 牟介剛;劉劍;谷云慶;代東順;鄭水華;吳登昊;;仿生蝸殼離心泵內(nèi)部非定常流動(dòng)特性分析[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2016年05期
8 李晉;閆清東;王玉嶺;李銘洋;魏巍;;液力變矩器泵輪內(nèi)流場(chǎng)非定常流動(dòng)現(xiàn)象研究[J];機(jī)械工程學(xué)報(bào);2016年14期
9 閆清東;劉博深;魏巍;;液力變矩器流體-固體耦合壓力脈動(dòng)分析[J];兵工學(xué)報(bào);2016年04期
10 葉曉琰;馮耀寧;汪靖;張德勝;胡敬寧;;海水淡化泵水潤(rùn)滑軸承試驗(yàn)測(cè)試與分析[J];排灌機(jī)械工程學(xué)報(bào);2015年06期
相關(guān)博士學(xué)位論文 前2條
1 劉海建;動(dòng)葉與周向傾斜靜葉的級(jí)間非定常流動(dòng)及氣動(dòng)聲學(xué)研究[D];上海交通大學(xué);2014年
2 吳亞?wèn)|;帶尾緣吹氣的葉輪機(jī)械內(nèi)部流動(dòng)和氣動(dòng)噪聲問(wèn)題的研究[D];上海交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 何松霖;扁平化液力變矩器內(nèi)流場(chǎng)特性及導(dǎo)輪葉形研究[D];江蘇大學(xué);2016年
2 朱躍;屏蔽式電機(jī)主泵中動(dòng)靜干涉作用對(duì)葉輪應(yīng)力分析[D];上海交通大學(xué);2014年
3 杜魏魏;風(fēng)力發(fā)電可變導(dǎo)葉液力機(jī)械調(diào)速裝置研究[D];吉林大學(xué);2011年
4 段肖瓏;基于周向彎曲旋轉(zhuǎn)葉片的動(dòng)靜干涉流場(chǎng)及其氣動(dòng)噪聲的數(shù)值研究[D];上海交通大學(xué);2010年
,本文編號(hào):2405022
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/2405022.html