基于頻譜分析的磨機(jī)負(fù)荷檢測(cè)方法研究
[Abstract]:Mill is the core equipment for material crushing in industrial production. The ball mill comminutes materials through frequent collisions between steel balls and abrasives. In order to ensure the efficient and safe operation of ball mill, it is necessary to check the internal working state of ball mill. Ball mill load (including material quantity and material level) is an important testing index of abrasive process, which directly affects the working efficiency of mill. However, the internal working environment of ball mill is complex and changeable, it is difficult to ensure stable operation state, which greatly hinders the load detection of ball mill. At present, the factory mainly uses manual monitoring to estimate the load, there is a big error. There is also the problem that the load state of the mill can not be detected accurately by using the traditional detection method. In this paper, the detection methods of traditional principal component analysis (PCA) combined with extreme learning machine (ELM) are studied in detail. The defects of this method in mill load detection are analyzed from three aspects: spectrum analysis, principal component extraction and modeling. And put forward the corresponding solution. Then, considering the characteristics of mill load detection, this paper proposes a modeling and detection method which combines kernel principal component analysis (KPCA) with error minimization learning machine (EM_ELM) based on spectrum analysis. Modeling and analysis of grinding sound signal produced by grinding machine. The method proposed in this paper combines wavelet packet denoising to pre-process the signal and converts the signal to frequency domain analysis by using the modern power spectrum estimation method of maximum entropy method. The model relationship between the internal load state of mill and the external detection signal is established by indirect detection. Finally, the test results are compared with the traditional PCA-ELM detection method, combined with the data collected from the industrial field during the operation of the ball mill. The results show that the proposed KPCA-EM_ELM detection method based on spectrum analysis can improve the measurement accuracy, ensure the running time of the algorithm, and improve the detection accuracy and efficiency. It provides a theoretical basis for the application of this method to the actual load detection system of ball mill. It is of great significance and broad application prospect for improving the grinding efficiency of ball mill and stabilizing production.
【學(xué)位授予單位】:重慶郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TH69
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張杰;王建民;楊志剛;李艷姣;;基于功率譜分析的球磨機(jī)負(fù)荷模型[J];工礦自動(dòng)化;2013年12期
2 楊曉宇;徐韜光;傅世年;曾磊;邊曉娟;;Classical and modern power spectrum estimation for tune measurement in CSNS RCS[J];Chinese Physics C;2013年11期
3 嚴(yán)東;湯健;趙立杰;;基于特征提取和極限學(xué)習(xí)機(jī)的軟測(cè)量方法[J];控制工程;2013年01期
4 肖紀(jì)恩;;水泥工藝技術(shù)中應(yīng)該重視的幾個(gè)問(wèn)題[J];四川建材;2012年04期
5 趙立杰;湯健;柴天佑;;基于選擇性極限學(xué)習(xí)機(jī)集成的磨機(jī)負(fù)荷軟測(cè)量[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2011年12期
6 湯健;鄭秀萍;趙立杰;岳恒;柴天佑;;基于頻域特征提取與信息融合的磨機(jī)負(fù)荷軟測(cè)量[J];儀器儀表學(xué)報(bào);2010年10期
7 湯健;趙立杰;岳恒;柴天佑;;磨機(jī)負(fù)荷檢測(cè)方法研究綜述[J];控制工程;2010年05期
8 閆慶華;程兆剛;段云龍;;AR模型功率譜估計(jì)及Matlab實(shí)現(xiàn)[J];計(jì)算機(jī)與數(shù)字工程;2010年04期
9 杜卓明;屠宏;耿國(guó)華;;KPCA方法過(guò)程研究與應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2010年07期
10 宋仁義;;球磨機(jī)磨音多頻帶檢測(cè)系統(tǒng)的研發(fā)與設(shè)計(jì)[J];礦業(yè)工程;2009年02期
,本文編號(hào):2192156
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/2192156.html