基于超聲波技術(shù)的徑向滑動軸承潤滑液工作狀態(tài)研究
本文選題:超聲波 + 徑向滑動軸承 ; 參考:《長安大學(xué)》2015年博士論文
【摘要】:流體潤滑油膜對于減小相對運動機件之間的摩擦和磨損具有重要的作用。油膜厚度過薄會導(dǎo)致機件表面的相互接觸,進而產(chǎn)生較高摩擦和磨損,油膜厚度過大又會導(dǎo)致不必要的攪油能量損失。為了保證相對運動的機件能得到良好的潤滑,同時又不損失過多的能量,需要確保潤滑油膜的厚度。測量潤滑油膜的厚度不僅有助于改進機件的設(shè)計,而且掌握潤滑油膜的工作狀態(tài)。潤滑油膜的破裂會導(dǎo)致潤滑失效,進而導(dǎo)致機件的毀壞,所以對潤滑油膜厚度的測量是非常有必要的。超聲波是一種非破壞性的、安全以及便攜的技術(shù)。由于成本的降低和脈沖能力以及數(shù)字化技術(shù)的普及,超聲波設(shè)備的使用越來越廣泛。由于超聲波的特性大部分都取決于傳播介質(zhì),這使超聲波技術(shù)非常適于用來檢測潤滑油膜的厚度。此技術(shù)通過檢測由潤滑油膜反射的一部分聲波就可測量油膜厚度。但是由于在試驗臺搭建、超聲波使用及其準確度驗證等方面存在許多困難,此技術(shù)目前在油膜厚度檢測方面的使用還有很多工作要做。本文利用高頻超聲波對徑向滑動軸承內(nèi)潤滑液的油膜厚度和氣穴效應(yīng)進行了研究。并簡化了測量系統(tǒng),降低了測量成本,提高了超聲波技術(shù)的便捷性,為實現(xiàn)徑向滑動軸承油膜厚度的車載測量打下了堅實的基礎(chǔ),為后人的研究提供了理論依據(jù),也為軸承的設(shè)計和特殊使用條件下潤滑劑的選用提供了理論參考。最重要的是,掌握了潤滑狀態(tài)可以調(diào)節(jié)維護修理的周期,預(yù)防由于潤滑失效導(dǎo)致的經(jīng)濟損失。本文首先根據(jù)所測目標(biāo)是徑向滑動軸承的瞬時油膜厚度而選擇將超聲波傳感器安裝在軸頸內(nèi)部,與軸頸一起旋轉(zhuǎn);然后通過對徑向滑動軸承模擬儀的形狀和尺寸進行分析,選擇了單獨的壓電元件作為超聲波傳感器進行超聲波信號的發(fā)射和接收;在此基礎(chǔ)上根據(jù)壓電元件與油膜之間的距離選擇了壓電元件的頻率;隨后根據(jù)壓電元件在工作時需要進行高速旋轉(zhuǎn)的特性選擇了合適的滑環(huán)解決與電源之間的電路連接問題;利用Labview軟件編寫程序?qū)υ囼炏到y(tǒng)進行控制,并在其中運用彈簧模型利用反射率計算油膜厚度;設(shè)計了不同的試驗臺對彈簧模型中的參數(shù)進行測量;設(shè)計了特定的試驗臺考察溫度對壓電元件的影響;搭建試驗臺并在驗證其可靠性的基礎(chǔ)上對載荷、轉(zhuǎn)速和溫度的變化對徑向滑動軸承的瞬時油膜厚度和氣穴效應(yīng)的影響進行了測量,并對可能導(dǎo)致潤滑失效的工作條件進行了預(yù)測。本文的結(jié)果顯示,超聲波技術(shù)是一種十分可靠的油膜潤滑狀態(tài)測量技術(shù),但是由于超聲波波長限制,本文所開發(fā)的利用超聲波技術(shù)和彈簧模型相結(jié)合測量油膜厚度的技術(shù),只適用于微米級別的油膜厚度,且溫度的升高會導(dǎo)致超聲波傳感器產(chǎn)生的超聲脈沖的能量呈線性降低。徑向滑動軸承的載荷變大、溫度升高、轉(zhuǎn)速降低都會導(dǎo)致最小油膜厚度的減小、軸頸與軸瓦上加載點位置之間的距離越來越近以及氣穴效應(yīng)的增大。
[Abstract]:Fluid lubricating oil film plays an important role in reducing friction and wear between the relatively moving parts. Too thin film thickness will lead to contact on the surface of the machine, resulting in higher friction and wear. Too much oil film thickness will lead to unnecessary oil stirring energy loss. In order to ensure the relative motion of the machine can be well run. It needs to ensure the thickness of the lubricating oil film without losing too much energy at the same time. Measuring the thickness of the lubricating film not only helps to improve the design of the machine parts, but also grasps the working state of the lubricating film. The rupture of the lubricating oil film will lead to the failure of the lubrication and cause the destruction of the machine parts, so it is very necessary to measure the thickness of the lubricating oil film. Yes. Ultrasonic is a non destructive, safe and portable technology. The use of ultrasonic equipment is more and more widely used because of cost reduction, pulse ability and the popularization of digital technology. The characteristics of ultrasonic wave are mostly dependent on Yu Chuanbo medium, which makes ultrasonic technology very suitable for detecting the thickness of lubricating oil film. This technique can measure the thickness of the oil film by detecting a part of the acoustic wave reflected from the lubricating oil film. But because there are many difficulties in the use of ultrasonic and its accuracy verification in the test bench, there are many work to do in the field of oil film thickness detection. The oil film thickness and cavitation effect of the inner lubricating fluid are studied, and the measurement system is simplified, the measurement cost is reduced, the convenience of the ultrasonic technology is improved, the solid foundation for the vehicle measurement of the oil film thickness of the radial journal bearing is laid down, the theoretical basis is provided for the research of the later people, and the design and special of the bearings are also provided. A theoretical reference is provided for the selection of lubricants under special conditions. The most important thing is that the lubrication state can be controlled to maintain the repair period and prevent the economic loss due to lubrication failure. Firstly, the ultrasonic sensor is chosen to be installed in the neck of the shaft according to the instantaneous oil film thickness of the radial sliding bearing. Through the analysis of the shape and size of the radial journal bearing simulator, a single piezoelectric element is selected as the ultrasonic sensor to transmit and receive the ultrasonic signal. On this basis, the frequency of the piezoelectric element is selected according to the distance between the piezoelectric element and the oil film; then the piezoelectric element is based on the piezoelectric element. In the work, the characteristic of high speed rotation is needed to choose the suitable slip ring to solve the circuit connection between the power and the power supply. The test system is controlled by Labview software program, and the spring model is used to calculate the oil film thickness by using the reflectivity, and the parameters of the spring model are designed by different test rig. The influence of the temperature on the piezoelectric element is designed and the test bench is built to measure the influence of the load, speed and temperature on the instantaneous oil film thickness and cavitation effect of the radial sliding bearing on the basis of its reliability, and the working conditions that can lead to the failure of the lubrication are predicted. The results of this paper show that ultrasonic technology is a very reliable technique for measuring the state of oil film lubrication. However, because of the limitation of ultrasonic wave length, the technique used in this paper to measure the thickness of oil film by combining the ultrasonic technology with the spring model is only suitable for the thickness of the oil film in the micron level, and the increase of temperature will lead to ultrasonic sensing. The energy of the ultrasonic pulse produced by the device decreases linearly. The load of the radial journal bearing becomes larger, the temperature increases and the speed decreases, which will result in the decrease of the minimum oil film thickness, the distance between the position of the load point on the shaft neck and the axle bush, and the increase of the cavitation effect.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TH133.31;TB553
【相似文獻】
相關(guān)期刊論文 前10條
1 徐龍祥,朱均;徑向滑動軸承性能計算方法的改進[J];汽輪機技術(shù);1991年06期
2 鄧圭玲,段吉安,朱均;計算徑向滑動軸承無量綱膜厚及其偏導(dǎo)的統(tǒng)一公式[J];礦山機械;2000年08期
3 吳承偉;馬國軍;;復(fù)合表面徑向滑動軸承的概念和性能預(yù)報[J];計算力學(xué)學(xué)報;2007年01期
4 王基;鄭建華;謝沛霖;;鑲嵌式復(fù)合徑向滑動軸承的實驗研究[J];潤滑與密封;2007年07期
5 王麗萍;喬廣;鄭鐵生;;可傾瓦徑向滑動軸承完整動特性系數(shù)的分析模型[J];計算力學(xué)學(xué)報;2008年06期
6 賈小俊;范世東;;考慮軸頸傾斜的徑向滑動軸承動態(tài)特性研究[J];船海工程;2008年05期
7 黎偉;陳志祥;汪久根;;軸線偏斜對多瓦徑向滑動軸承熱潤滑性能的影響[J];潤滑與密封;2011年09期
8 黎偉;陳志祥;汪久根;;多瓦可傾瓦徑向滑動軸承熱潤滑性能分析[J];潤滑與密封;2011年12期
9 方靜輝;汪久根;陳志祥;;臥式水電機組用徑向滑動軸承熱彈流特性分析[J];潤滑與密封;2012年01期
10 朱均,周進良,周長新;可傾瓦徑向滑動軸承性能分析[J];西安交通大學(xué)學(xué)報;1979年04期
相關(guān)會議論文 前10條
1 朱均;周進良;周長新;;可傾瓦徑向滑動軸承性能分析[A];第二次全國摩擦磨損潤滑學(xué)術(shù)會議論文集[C];1979年
2 丘大謀;羋振南;林鈞;;關(guān)于可傾瓦徑向滑動軸承油膜動力特性的討論[A];第二次全國摩擦磨損潤滑學(xué)術(shù)會議論文集[C];1979年
3 朱均;;關(guān)于可傾瓦徑向滑動軸承穩(wěn)定性的探討(一)[A];摩擦學(xué)第三屆全國學(xué)術(shù)交流會論文集流體潤滑部分(Ⅰ)[C];1982年
4 楊晟博;楊金福;;徑向滑動軸承油膜流場壓力分布的解析分析[A];第八屆全國轉(zhuǎn)子動力學(xué)學(xué)術(shù)討論會論文集[C];2008年
5 徐海波;朱均;;徑向滑動軸承中流體從層流到紊流的流動分析和轉(zhuǎn)變判據(jù)研究[A];第五屆全國摩擦學(xué)學(xué)術(shù)會議論文集(下冊)[C];1992年
6 王小靜;蘇葒;陳曉陽;張直明;;動載徑向滑動軸承油膜空穴研究[A];第七屆中國軋機油膜軸承技術(shù)研討會論文集[C];2004年
7 胡元中;黃亭亭;;各種工作因素影響下,可傾瓦塊徑向滑動軸承動力特性系數(shù)的分析及計算[A];摩擦學(xué)第三屆全國學(xué)術(shù)交流會論文集流體潤滑部分(Ⅰ)[C];1982年
8 孫江龍;劉彥強;;徑向滑動軸承動壓潤滑分析[A];2008年船舶水動力學(xué)學(xué)術(shù)會議暨中國船舶學(xué)術(shù)界進入ITTC30周年紀念會論文集[C];2008年
9 王偉;劉小君;劉q;劉勇;王召喚;;顆粒流潤滑徑向滑動軸承從起動到穩(wěn)定的動態(tài)過程研究[A];第十一屆全國摩擦學(xué)大會論文集[C];2013年
10 鐘海權(quán);;250噸級低速重載徑向滑動軸承研究[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機遇、責(zé)任和對策(上冊)[C];2002年
相關(guān)博士學(xué)位論文 前1條
1 于唯;基于超聲波技術(shù)的徑向滑動軸承潤滑液工作狀態(tài)研究[D];長安大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 彭龍龍;徑向滑動軸承層流與湍流潤滑特性研究[D];浙江大學(xué);2016年
2 朱光;高速徑向滑動軸承熱力學(xué)分析[D];鄭州大學(xué);2016年
3 孟繁娟;液體動壓徑向滑動軸承實驗臺仿真軟件的研制[D];北京交通大學(xué);2008年
4 黎偉;多瓦可傾瓦徑向滑動軸承熱潤滑性能的研究[D];浙江大學(xué);2012年
5 余四平;高速離心泵徑向滑動軸承承載能力分析[D];南京林業(yè)大學(xué);2012年
6 于楊冰;基于數(shù)據(jù)庫的徑向滑動軸承—轉(zhuǎn)子系統(tǒng)非線性動力學(xué)行為研究[D];西安理工大學(xué);2010年
7 帥旗;動靜載徑向滑動軸承特性參數(shù)計算及仿真[D];西南交通大學(xué);2002年
8 余譜;水輪機徑向滑動軸承潤滑特性研究[D];浙江大學(xué);2014年
9 王龍剛;具有油槽的徑向滑動軸承實驗臺仿真軟件的研制[D];北京交通大學(xué);2008年
10 張興州;考慮表面形貌的徑向滑動軸承潤滑分析[D];青島大學(xué);2015年
,本文編號:2062979
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/2062979.html