斜盤式軸向柱塞泵流體振動溯源研究
本文選題:軸向柱塞泵 + 湍流模型 ; 參考:《燕山大學(xué)》2015年博士論文
【摘要】:液壓系統(tǒng)振動是影響液壓系統(tǒng)可靠性的關(guān)鍵因素之一,而液壓泵又是液壓系統(tǒng)振動的主要來源。液壓泵的振動主要有機械振動和流體振動,其中流體振動主要是流量脈動和由于配流結(jié)構(gòu)導(dǎo)致的壓力沖擊引起的。分析流體振動產(chǎn)生的原因,對液壓泵的結(jié)構(gòu)進行優(yōu)化以減小結(jié)構(gòu)原因引起的流體振動,在液壓系統(tǒng)減振方面具有積極的理論與現(xiàn)實意義。本文以軸向柱塞泵為研究對象,采用理論分析和實驗研究相結(jié)合的方法,從流場特性、振動傳遞規(guī)律和柱塞腔油擊理論入手,研究軸向柱塞泵流場分析用湍流模型,軸向柱塞泵流量脈動特性,軸向柱塞泵諧響應(yīng)與瞬態(tài)響應(yīng)特性及最佳配流方法。針對軸向柱塞泵流場分析用湍流模型,采用數(shù)值模擬與PIV測試相結(jié)合的方法,建立軸向柱塞泵單柱塞-配流盤機理模型與實驗?zāi)P?分別采用不同的計算模型進行數(shù)值模擬,通過對比渦系結(jié)構(gòu)、流量、壓力等參數(shù),最終得到適合泵流場分析的湍流模型,并對模型的系數(shù)進行修正,使數(shù)值模擬的精度提高。針對軸向柱塞泵流量脈動特性,采用動網(wǎng)格與滑移網(wǎng)格技術(shù),考慮油液可壓縮性、柱塞阻尼孔和滑靴處油膜,建立軸向柱塞泵流場分析有限體積模型,用修正后湍流模型對泵進行瞬態(tài)流場分析,得到在不同壓力和不同轉(zhuǎn)速工況下柱塞泵流量脈動與壓力波動和柱塞腔壓力與流量的變化規(guī)律。為軸向柱塞泵瞬態(tài)響應(yīng)分析提供理論基礎(chǔ)。針對軸向柱塞泵諧響應(yīng)與瞬態(tài)響應(yīng)特性,建立整泵的有限元模型,通過諧響應(yīng)分析得到軸向柱塞泵在實際安裝約束條件下的固有模態(tài);通過瞬態(tài)響應(yīng)分析,得到軸向柱塞泵在流量脈動激勵下的振動特性。針對軸向柱塞泵最佳配流,建立柱塞腔預(yù)升壓和預(yù)卸壓特性微分方程,以三角阻尼槽結(jié)構(gòu)為例,給出最佳配流特性的結(jié)構(gòu)優(yōu)化設(shè)計方法,對泵結(jié)構(gòu)進行優(yōu)化設(shè)計,分析結(jié)構(gòu)優(yōu)化前后流場特性,驗證結(jié)構(gòu)優(yōu)化設(shè)計方法的有效性;分析柱塞阻尼孔直徑與滑靴處油膜厚度對軸向柱塞泵流量與壓力特性的影響規(guī)律。建立軸向柱塞泵振動測試實驗臺,采用錘擊法驗證軸向柱塞泵固有模態(tài),并分別測試在不同壓力和不同轉(zhuǎn)速工況下泵殼的振動規(guī)律,驗證瞬態(tài)響應(yīng)分析結(jié)果。
[Abstract]:The vibration of hydraulic system is one of the key factors affecting the reliability of hydraulic system, and hydraulic pump is the main source of vibration of hydraulic system. The vibration of hydraulic pump mainly includes mechanical vibration and fluid vibration, in which fluid vibration is mainly caused by flow pulsation and pressure shock caused by flow distribution structure. Analyzing the causes of fluid vibration and optimizing the structure of hydraulic pump to reduce the fluid vibration caused by structural reasons have positive theoretical and practical significance in reducing the vibration of hydraulic system. In this paper, the axial piston pump is taken as the research object, and the turbulent model for the flow field analysis of axial piston pump is studied by combining theoretical analysis with experimental research, starting with the flow field characteristics, vibration transfer law and plunger cavity oil shock theory. Flow pulsation characteristics of axial piston pump, harmonic and transient response characteristics of axial piston pump and optimal flow allocation method. Based on the turbulent model used in the flow field analysis of axial piston pump and the combination of numerical simulation and PIV test, the mechanism model and experimental model of single plunger distribution disk of axial piston pump are established, and the different calculation models are used to simulate the flow field of axial piston pump. By comparing the vortex structure, flow rate, pressure and other parameters, a turbulence model suitable for pump flow field analysis is obtained, and the coefficients of the model are modified to improve the accuracy of the numerical simulation. According to the characteristics of flow pulsation of axial piston pump, a finite volume model for flow field analysis of axial piston pump is established by using dynamic mesh and sliding grid technology, considering the compressibility of oil, the damping hole of plunger and the oil film at slipper. The transient flow field of the pump is analyzed by using the modified turbulence model. The flow fluctuation and pressure fluctuation of the piston pump and the variation of the pressure and flow rate of the plunger cavity are obtained under different pressure and different rotational speed conditions. It provides a theoretical basis for the transient response analysis of axial piston pump. According to the harmonic and transient response characteristics of axial piston pump, the finite element model of the whole pump is established. The natural mode of axial piston pump under the actual installation constraint condition is obtained by harmonic response analysis, and the transient response analysis is carried out. The vibration characteristics of axial piston pump under flow pulsation excitation are obtained. According to the optimal flow distribution of axial piston pump, differential equations of pressure-pressured and pressure-relief characteristics of plunger cavity are established. Taking the structure of triangular damping tank as an example, the optimal design method of optimal flow distribution characteristics is given, and the structure of pump is optimized. The flow field characteristics before and after structural optimization are analyzed to verify the effectiveness of the structural optimization design method and the influence of the diameter of the plunger damping hole and the oil film thickness on the flow and pressure characteristics of the axial piston pump is analyzed. The vibration test bench of axial piston pump was set up, and the inherent mode of axial piston pump was verified by hammering method. The vibration law of pump shell under different pressure and different rotational speed was measured, and the transient response analysis results were verified.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TH137.51
【參考文獻】
相關(guān)期刊論文 前10條
1 蘇勛文;王少萍;朱冬梅;石健;;直升機中減速器諧響應(yīng)分析與傳感器優(yōu)化布局[J];北京航空航天大學(xué)學(xué)報;2011年09期
2 郭衛(wèi)東,,王占林;斜盤式軸向柱塞泵實際流量的分析研究[J];北京航空航天大學(xué)學(xué)報;1996年02期
3 陳麗娜;楊冠杰;;快速檢測流場中渦核區(qū)域的角度函數(shù)法[J];工程圖學(xué)學(xué)報;2008年01期
4 周大高;柳陽威;文曉慶;陸利蓬;;改進SA模型對翼型分離流動的數(shù)值模擬[J];北京航空航天大學(xué)學(xué)報;2012年10期
5 冀宏;武俊合;王金林;孫天健;;液壓電機葉片泵的振動模態(tài)分析[J];蘭州理工大學(xué)學(xué)報;2013年02期
6 陸利蓬,陳矛章;近壁區(qū)Reynolds應(yīng)力及湍能耗散率輸運特性的理論模型[J];中國科學(xué)(A輯);1999年12期
7 馬六成;;斜盤型軸向柱塞泵降低噪聲的理論分析與試驗研究[J];機床與液壓;1987年03期
8 李靜;徐兵;馬吉恩;;可壓縮流體介質(zhì)軸向柱塞泵流量脈動仿真研究[J];機床與液壓;2008年05期
9 林靜;孫明智;;軸向柱塞泵配流盤結(jié)構(gòu)對流量脈動的影響[J];流體傳動與控制;2007年03期
10 馬希金,郭俊杰,吳蓓;CFD法設(shè)計軸流式油氣混輸泵初探[J];流體機械;2004年07期
相關(guān)博士學(xué)位論文 前1條
1 艾青林;軸向柱塞泵配流副潤滑特性的試驗研究[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 王小東;單斜盤錯相位雙側(cè)柱塞泵結(jié)構(gòu)設(shè)計與FLUENT分析[D];吉林大學(xué);2014年
本文編號:1979442
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1979442.html