緊湊高效擴壓器設(shè)計技術(shù)研究
本文選題:離心壓氣機 + 保形通道式擴壓器 ; 參考:《南京航空航天大學》2016年碩士論文
【摘要】:保形通道式擴壓器是一種新型的葉片式擴壓器結(jié)構(gòu),其葉片從徑向段進口到軸向段出口是一體化的,因此氣流流過擴壓器,相當于流過一系列管道,其通道面積分布形式和通道構(gòu)造角分布形式對擴壓器性能有著決定性的影響。而擴壓器的徑向尺寸限制了擴壓器通道的流道長度,對擴壓器的性能也有著重要影響,同時擴壓器的徑向尺寸往往決定了對發(fā)動機的徑向尺寸大小,制約了發(fā)動機結(jié)構(gòu)緊湊化的發(fā)展趨勢。為了設(shè)計結(jié)構(gòu)更加緊湊性能更好的擴壓器,本文對保形通道式擴壓器的三個關(guān)鍵參數(shù)(半徑比、通道面積和通道構(gòu)造角)開展研究,主要包括以下內(nèi)容:1)研究不同半徑比情況下通道面積分布對擴壓器性能的獨立影響規(guī)律分別在擴壓器最大-進口半徑比分別為1.2、1.4和1.6的三種尺寸下,單獨研究擴壓器通道面積分布的設(shè)計規(guī)律。研究發(fā)現(xiàn),半徑比為1.2時,最佳通道面積分布方式是線性度為0的形式;半徑比為1.4時,最佳通道面積分布方式是線性度為12.7的形式;半徑比為1.6時,最佳通道面積分布的線性度為19.6。2)研究不同半徑比情況下通道構(gòu)造角分布對擴壓器性能的獨立影響規(guī)律分別在擴壓器最大-進口半徑比為1.2、1.4和1.6的三種尺寸下,保證所有方案通道面積分布相同,單獨研究擴壓器通道構(gòu)造角分布的設(shè)計規(guī)律。研究表明,在本文的研究范圍內(nèi),三種徑向尺寸下,擴壓器的性能都是在通道構(gòu)造角分布的線性度取最大值時,達到最高性能。3)分析了子午流道和葉片前后緣形狀對通道面積分布規(guī)律的影響子午流道和前后緣形狀的變化對擴壓器面積分布形式有一定的影響,但是通道面積分布曲線中間大部分形狀保持不變,線性度的值不變,說明通道面積分布曲線主體形狀沒有受到影響。研究表明,子午流道和葉片前后緣形狀的變化并不影響擴壓器通道面積分布規(guī)律的確定,通道面積分布曲線主體形狀,決定了擴壓器性能的高低。4)分析了半徑比、通道面積分布和通道構(gòu)造角分布對擴壓器性能的耦合影響通過對半徑比、通道面積以及通道構(gòu)造角三者對保形通道式擴壓器性能影響的交叉對比分析發(fā)現(xiàn),在本文的研究范圍內(nèi),擴壓器通道面積分布和通道構(gòu)造角分布規(guī)律具有獨立性,其中面積分布對擴壓器性能影響更大,尤其是通道面積分布取最佳方案時,通道構(gòu)造角分布在很大的范圍內(nèi)對擴壓器性能影響很小。擴壓器半徑比對最佳通道面積分布的規(guī)律的影響更為明顯,隨著擴壓器半徑比的變大,最佳通道面積分布的線性度逐漸增大。5)對某分段式葉片擴壓器進行保形通道式改型設(shè)計根據(jù)本文研究的設(shè)計規(guī)律,以某分段式擴壓器最高性能點為設(shè)計點,進行兩種保形通道式改進設(shè)計,一種是保持子午流道和原型一致改型設(shè)計,另一種是減小徑向尺寸的改型設(shè)計,以此來驗證本文研究所得的設(shè)計規(guī)律的準確性。研究表明,兩種保形通道式設(shè)計方案都能獲得較原型更高的性能,這說明保形通道式擴壓器結(jié)構(gòu)較分段式葉片擴壓器具有緊湊度以及高性能的優(yōu)勢。
[Abstract]:The conformal diffuser is a new type of vane diffuser structure, which is integrated from the inlet of the radial section to the exit of the axial section. Therefore, the flow through the diffuser is equivalent to a series of pipes. The distribution of the channel area and the distribution of the channel structure have a decisive influence on the performance of the diffuser. And the diffuser is the diffuser. The radial size limits the channel length of the diffuser and has an important influence on the performance of the diffuser. At the same time, the radial size of the diffuser often determines the radial size of the engine, which restricts the development trend of the compact structure of the engine. Three key parameters (radius ratio, channel area and channel structure angle) of the diffuser are studied, including the following contents: 1) the study of the independent influence of the channel area distribution on the performance of the diffuser under the condition of different radius ratio is studied separately under the maximum inlet radius ratio of 1.2,1.4 and 1.6, respectively. When the radius ratio is 1.2, the optimum channel area distribution is 0 in the form of linear degree. When the radius ratio is 1.4, the optimum channel area distribution is the form of linearity of 12.7; when the radius ratio is 1.6, the linearity of the optimal channel surface distribution is 19.6.2), and the different radii ratio conditions are studied. The independent influence law of the channel structure angle distribution on the performance of the diffuser, under the three sizes of the maximum inlet radius ratio of 1.2,1.4 and 1.6, ensures the same channel area distribution, and studies the design law of the distribution of the diffuser channel separately. The study shows that three radial feet are in the scope of this paper. In an inch, the performance of the diffuser is the maximum performance of the linear degree of the channel structure angle distribution. The maximum performance.3 is reached. The influence of the meridian channel and the shape of the front and rear edges on the distribution of the channel area has a certain influence on the area distribution of the diffuser, but the distribution of the area of the diffuser is influenced by the size distribution of the diffuser. Most of the shapes in the middle of the curve remain unchanged, the value of the linear degree is constant, which shows that the main shape of the channel area distribution curve is not affected. The study shows that the change of the shape of the meridian channel and the front and rear edge of the blade does not affect the distribution of the area of the diffuser, and the main shape of the channel surface product distribution curve determines the performance of the diffuser. The effect of radius ratio, channel area distribution and channel structure angle distribution on the performance of the diffuser is analyzed by the cross contrast analysis of the influence of the radius ratio, channel area and channel structure angle on the performance of the conformal channel expander. It is found that the channel area distribution and channel structure of the diffuser are in the scope of this paper. The distribution of the angular distribution is independent, and the area distribution has greater influence on the performance of the diffuser. Especially when the channel area distribution is the best scheme, the channel structure angle distribution has little influence on the diffuser's performance in a large range. The radius ratio of the diffuser is more obvious with the influence of the optimum channel area distribution, with the radius of the diffuser. As the ratio becomes larger, the linear degree of the optimal channel area distribution is gradually increased by.5). According to the design rule of this paper, the design of the maximum performance point of a segmented diffuser is designed according to the design rule of this paper. Two kinds of improved design of the shape preserving channel are carried out. One is to keep the meridian channel and the prototype to be the same. The other is the retrofit design of reducing the size of the diameter to verify the accuracy of the design rules obtained in this paper. The study shows that the two shape - preserving channel design schemes can obtain higher performance than the prototype, which shows that the conformal diffuser structure is more compact and high performance than that of the segmented vane diffuser. Advantage.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TH122
【參考文獻】
相關(guān)期刊論文 前7條
1 吳海燕;張朝磊;;離心壓氣機葉片擴壓器多點氣動優(yōu)化設(shè)計[J];風機技術(shù);2010年06期
2 廖紅桃;賽慶毅;楊愛玲;戴韌;;擴壓器稠度對離心壓縮機性能影響的數(shù)值分析[J];風機技術(shù);2010年03期
3 張偉;宮武旗;樊孝華;席光;;高速離心風機葉片擴壓器前緣傾角對其性能影響的實驗研究[J];工程熱物理學報;2009年08期
4 石建成;劉寶杰;;混合型擴壓器流動特點分析[J];推進技術(shù);2008年05期
5 費繼友;戴冀;史敏;李連生;;低稠度葉片擴壓器形狀參數(shù)的分析[J];流體機械;2007年06期
6 張勇;聞蘇平;胡小文;;葉片擴壓器在小流量離心壓縮機中的應(yīng)用研究[J];風機技術(shù);2007年03期
7 趙曉路,王巍;離心壓氣機低稠度串列葉柵擴壓器流場數(shù)值分析[J];工程熱物理學報;1997年02期
相關(guān)博士學位論文 前2條
1 陳杰;跨聲速微型斜流壓氣機設(shè)計方法研究[D];南京航空航天大學;2010年
2 宣建光;微型發(fā)動機部件改進與整機性能測試[D];南京航空航天大學;2010年
相關(guān)碩士學位論文 前2條
1 朱銀娟;離心壓氣機保型通道擴壓器流動分析及設(shè)計方法研究[D];南京航空航天大學;2012年
2 姚瑞鋒;離心壓氣機內(nèi)流分析及擴壓器的優(yōu)化設(shè)計[D];華中科技大學;2011年
,本文編號:1884556
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1884556.html