基于應(yīng)力約束凝聚化的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化技術(shù)研究
本文選題:連續(xù)體結(jié)構(gòu) + 拓?fù)鋬?yōu)化; 參考:《長(zhǎng)沙理工大學(xué)》2015年碩士論文
【摘要】:基于應(yīng)力約束的拓?fù)鋬?yōu)化研究是拓?fù)鋬?yōu)化設(shè)計(jì)中的一個(gè)非常有應(yīng)用前景,又具有很大難度的課題。與涉及柔順度的拓?fù)鋬?yōu)化的文獻(xiàn)相比,基于應(yīng)力約束的拓?fù)鋬?yōu)化方面文獻(xiàn)很少。當(dāng)前基于應(yīng)力約束的拓?fù)鋬?yōu)化方面仍然存在許多問題,如應(yīng)力奇異、應(yīng)力集中和近似等效優(yōu)化模型等。因此,研究應(yīng)力約束的拓?fù)鋬?yōu)化問題具有一定的理論價(jià)值和工程應(yīng)用價(jià)值。針對(duì)應(yīng)力約束、體積最小拓?fù)鋬?yōu)化問題,在已有方法和措施基礎(chǔ)上,本文完成了大量數(shù)值仿真,并分析了應(yīng)力場(chǎng)及相關(guān)凝聚函數(shù)的變化規(guī)律。提出了基于應(yīng)力梯度及應(yīng)力約束凝聚化的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化技術(shù),分別建立了相應(yīng)的算法,給出了驗(yàn)證算例。首先,本文采用RAMP過濾函數(shù)以及qp方法來解決應(yīng)力奇異現(xiàn)象。在簡(jiǎn)化的近似優(yōu)化模型中,將拓?fù)渥兞康碾x散條件和結(jié)構(gòu)應(yīng)力的1q范數(shù)作為目標(biāo)體積的懲罰函數(shù),將最可能的主動(dòng)單元應(yīng)力約束及KS總體凝聚應(yīng)力約束作為應(yīng)力約束條件,減少了計(jì)算規(guī)模,有利于控制局部單元應(yīng)力。參考MMA方法,構(gòu)建了結(jié)構(gòu)應(yīng)力1q范數(shù)的近似再近似表示式,結(jié)合動(dòng)態(tài)變化的應(yīng)力約束限,建立一套高效的拓?fù)鋬?yōu)化算法。數(shù)值仿真研究了該方法的可行性和優(yōu)缺點(diǎn)。再者,定義了應(yīng)力梯度近似度量值。將最可能的主動(dòng)單元應(yīng)力約束以及應(yīng)力梯度總體凝聚函數(shù)作為約束條件,建立一個(gè)新的應(yīng)力約束、體積最小拓?fù)鋬?yōu)化近似等效模型。結(jié)合MMA近似展開函數(shù)的數(shù)學(xué)二次規(guī)劃算法,給出了新的應(yīng)力約束的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化方法,并完成了其數(shù)值仿真研究。然而,將一個(gè)或幾個(gè)應(yīng)力約束凝聚化函數(shù)作為懲罰項(xiàng),引入目標(biāo)函數(shù)中具有經(jīng)驗(yàn)性,并不嚴(yán)謹(jǐn),且近似優(yōu)化模型與原優(yōu)化問題模型的等效性和工程應(yīng)用適用性等值得商討。本文為了合理解決應(yīng)力集中問題,攻克近似等效優(yōu)化模型等關(guān)鍵技術(shù)難題,提出了一套優(yōu)化模型減縮和求解技術(shù)。第一,引入了幾個(gè)類似于正態(tài)分布的函數(shù),并將其作為結(jié)構(gòu)應(yīng)力的q范數(shù)函數(shù)的加權(quán)函數(shù),形成了幾個(gè)加權(quán)的應(yīng)力約束總體凝聚函數(shù)。第二,引入應(yīng)力梯度凝聚約束函數(shù),借鑒變約束限優(yōu)化方法思想和引進(jìn)置信區(qū)間方案,構(gòu)建了具有較好等效性的近似減縮優(yōu)化模型,解決了應(yīng)力集中和應(yīng)力控制問題。第三,提出了對(duì)偶子問題的閉式解的近似光滑函數(shù),構(gòu)建了新的對(duì)偶求解方法。最后,形成了基于應(yīng)力梯度及應(yīng)力約束凝聚化的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化技術(shù),分別建立了相應(yīng)的算法,給出了驗(yàn)證算例。算例結(jié)果表明本文提出的基于應(yīng)力梯度及應(yīng)力約束凝聚化的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化方法能夠解決應(yīng)力約束的拓?fù)鋬?yōu)化問題,得到的最佳拓?fù)渚哂休^好的0/1分布特征,所提出方法可靠和有效的,方法具有良好的理論價(jià)值及工程應(yīng)用價(jià)值。
[Abstract]:The study of topological optimization based on stress constraints is a very promising and difficult subject in topology optimization design.Compared with the literature on topological optimization of flexibility, there are few papers on topological optimization based on stress constraints.At present, there are still many problems in topology optimization based on stress constraints, such as stress singularity, stress concentration and approximate equivalent optimization model.Therefore, the study of topological optimization problem with stress constraints has certain theoretical value and engineering application value.On the basis of existing methods and measures, a large number of numerical simulations have been completed to solve the problem of stress constraint and volume minimization topology optimization, and the variation of stress field and related condensing function has been analyzed.The topology optimization technique of continuum structure based on stress gradient and stress constraint condensation is proposed. The corresponding algorithms are established and the verification examples are given.Firstly, RAMP filter function and QP method are used to solve the stress singularity phenomenon.In the simplified approximate optimization model, the discrete conditions of topological variables and the 1q norm of structural stress are taken as the penalty function of the target volume, and the most probable stress constraints of active element and KS aggregate stress are taken as stress constraints.The calculation scale is reduced and the local element stress is controlled.Referring to the MMA method, the approximate reapproximate expression of the structural stress 1q norm is constructed, and a set of efficient topology optimization algorithm is established combining with the dynamic variation stress constraint limit.The feasibility, advantages and disadvantages of this method are studied by numerical simulation.Furthermore, the approximate measure of stress gradient is defined.Taking the most probable stress constraints of active elements and the aggregate function of stress gradient as the constraint conditions, a new stress constraint, approximate equivalent model of volume minimization topology optimization, is established.Combined with the mathematical quadratic programming algorithm of MMA approximate expansion function, a new topology optimization method for continuum structure with stress constraints is presented, and its numerical simulation is completed.However, the introduction of one or more stress-constrained condensing functions into the objective function is empirical and not rigorous, and the equivalence between the approximate optimization model and the original optimization model and the applicability of the engineering application are worth discussing.In order to solve the stress concentration problem reasonably and overcome the key technical problems such as approximate equivalent optimization model, a set of optimization model reduction and solution techniques are proposed in this paper.Firstly, several functions similar to normal distribution are introduced, which are used as weighting functions of Q norm function of structural stress, and several weighted aggregate condensate functions with stress constraints are formed.Secondly, by introducing the stress gradient condensation constraint function, using the idea of variable constraint limit optimization method and the introduction of confidence interval scheme, an approximate reduction optimization model with good equivalence is constructed, which solves the problems of stress concentration and stress control.Thirdly, the approximate smooth function of the closed solution of the dual subproblem is proposed, and a new dual solution method is constructed.Finally, the topology optimization technology of continuum structure based on stress gradient and stress constraint condensation is formed, and the corresponding algorithms are established, and the verification examples are given.The numerical results show that the proposed topology optimization method based on stress gradient and stress constraint condensation can solve the topological optimization problem of stress constraints, and the obtained optimal topology has a good 0 / 1 distribution characteristic.The proposed method is reliable and effective, and has good theoretical value and engineering application value.
【學(xué)位授予單位】:長(zhǎng)沙理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH122
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 焦楊;劉景園;;基于齒行法的僅受應(yīng)力約束的連續(xù)梁結(jié)構(gòu)優(yōu)化計(jì)算[J];南昌大學(xué)學(xué)報(bào)(工科版);2008年04期
2 劉曉迪;隋允康;宇慧平;;板殼結(jié)構(gòu)的應(yīng)力約束拓?fù)鋬?yōu)化設(shè)計(jì)[J];力學(xué)與實(shí)踐;2012年04期
3 鄧果;榮見華;邢曉娟;;一種考慮位移和應(yīng)力約束的結(jié)構(gòu)拓?fù)鋬?yōu)化方法[J];長(zhǎng)沙理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
4 隋允康;張學(xué)勝;龍連春;;應(yīng)力約束處理為應(yīng)變能集成的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化[J];計(jì)算力學(xué)學(xué)報(bào);2007年05期
5 喬惠云;周克民;;多工況應(yīng)力約束下的拓?fù)鋬?yōu)化格柵[J];工程力學(xué);2009年06期
6 閆凱;周克民;;類桁架結(jié)構(gòu)的多工況應(yīng)力約束拓?fù)鋬?yōu)化設(shè)計(jì)[J];華僑大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
7 許素強(qiáng),夏人偉;結(jié)構(gòu)優(yōu)化中的混合變量應(yīng)力約束近似方法[J];北京航空航天大學(xué)學(xué)報(bào);1993年04期
8 于新,隋允康;平面連續(xù)體多工況應(yīng)力約束下結(jié)構(gòu)拓?fù)鋬?yōu)化的有無復(fù)合體方法[J];計(jì)算力學(xué)學(xué)報(bào);2001年02期
9 歐笛聲;周雄新;梁志達(dá);;靜定桁架結(jié)構(gòu)截面最優(yōu)化設(shè)計(jì)的功定向配置法[J];機(jī)械強(qiáng)度;2011年05期
10 ;[J];;年期
相關(guān)會(huì)議論文 前3條
1 杜家政;隋允康;;基于應(yīng)力約束全局化的框架結(jié)構(gòu)拓?fù)鋬?yōu)化[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
2 李俊杰;杜家政;;基于應(yīng)力約束全局化的框架結(jié)構(gòu)拓?fù)鋬?yōu)化模型[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
3 劉樹堂;;位移約束桁架尺寸優(yōu)化設(shè)計(jì)的改進(jìn)齒形法[A];第18屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅲ冊(cè)[C];2009年
相關(guān)碩士學(xué)位論文 前2條
1 肖婷婷;基于應(yīng)力約束凝聚化的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化技術(shù)研究[D];長(zhǎng)沙理工大學(xué);2015年
2 王潤(rùn)澤;基于位移及應(yīng)力約束的連續(xù)體結(jié)構(gòu)靜力拓?fù)鋬?yōu)化[D];哈爾濱工業(yè)大學(xué);2010年
,本文編號(hào):1746979
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1746979.html