兩級(jí)軸流式通風(fēng)機(jī)級(jí)間流動(dòng)分析及葉片優(yōu)化設(shè)計(jì)
本文選題:軸流式通風(fēng)機(jī) 切入點(diǎn):級(jí)間干涉 出處:《浙江理工大學(xué)》2017年碩士論文
【摘要】:太陽(yáng)能、風(fēng)能、水能、電能、熱能、機(jī)械能等能源之間的轉(zhuǎn)化很多都是依靠葉輪機(jī)械來(lái)完成的。葉輪機(jī)械廣泛的運(yùn)用了國(guó)民生活中,例如,化工、農(nóng)業(yè)、冶金、礦井、制藥、電力等各個(gè)領(lǐng)域,而葉輪機(jī)械中非常重要的一類(lèi)機(jī)械是風(fēng)機(jī)。有關(guān)資料顯示,我國(guó)風(fēng)機(jī)消耗的能源占煤炭消耗量的12%左右。軸流式通風(fēng)機(jī)相對(duì)于離心式通風(fēng)機(jī)有很多優(yōu)勢(shì)的地方,如今在很多關(guān)鍵產(chǎn)業(yè)、關(guān)鍵位置中,離心式通風(fēng)機(jī)逐步被軸流式通風(fēng)機(jī)所代替。因此,提高軸流式通風(fēng)機(jī)研究能力和設(shè)計(jì)水平,對(duì)節(jié)約能源和環(huán)境保護(hù)均有著非常重要的意義。為了深入認(rèn)識(shí)軸流式通風(fēng)機(jī)內(nèi)外部流場(chǎng)的流動(dòng)特性,并且采用合理的優(yōu)化方法對(duì)軸流式通風(fēng)機(jī)進(jìn)行優(yōu)化,以達(dá)到提高軸流式通風(fēng)機(jī)氣動(dòng)性能的目的,本文以?xún)杉?jí)軸流式通風(fēng)機(jī)為研究對(duì)象,采用數(shù)值模擬的方法深入研究了風(fēng)機(jī)結(jié)構(gòu)對(duì)軸流式通風(fēng)機(jī)氣動(dòng)性能的影響及風(fēng)機(jī)內(nèi)外部流場(chǎng)的分布情況,并在此基礎(chǔ)上,對(duì)提高葉輪氣動(dòng)性能進(jìn)行了研究。主要研究成果分為以下三個(gè)方面:(1)研究了兩級(jí)軸流式通風(fēng)機(jī)級(jí)間的流動(dòng)情況,結(jié)果表明:級(jí)間的流動(dòng)特征主要決定于轉(zhuǎn)動(dòng)件,也就是說(shuō),第一級(jí)葉輪對(duì)葉輪—導(dǎo)葉級(jí)的級(jí)間流動(dòng)影響更大,第一級(jí)葉輪尾跡干涉強(qiáng)于導(dǎo)葉勢(shì)流干涉;第二級(jí)葉輪對(duì)導(dǎo)葉—葉輪級(jí)的級(jí)間流動(dòng)影響更大,第二級(jí)葉輪勢(shì)流干涉強(qiáng)于導(dǎo)葉的尾跡干涉。(2)研究了葉片厚度對(duì)風(fēng)機(jī)氣動(dòng)性能的影響,結(jié)果表明:葉片厚度的改變對(duì)風(fēng)機(jī)氣動(dòng)性能有很大影響,相對(duì)而言,薄葉片風(fēng)機(jī)有更好的氣動(dòng)性能,但是厚葉片風(fēng)機(jī)穩(wěn)定工作區(qū)間更大;葉片厚度的改變,主要改變了葉片前緣的流動(dòng)情況和葉片壓力面的壓力分布情況。(3)對(duì)兩級(jí)軸流式通風(fēng)機(jī)的第一級(jí)葉輪進(jìn)行優(yōu)化,以葉片各截面安裝角為優(yōu)化參數(shù),對(duì)軸流葉輪進(jìn)行了正交試驗(yàn)優(yōu)化,優(yōu)化后的葉片很好的提高葉輪氣動(dòng)性能,在整個(gè)流量區(qū)間,靜壓、全壓、效率都有大幅提高,在設(shè)計(jì)流量點(diǎn),全壓增加了16.1pa,相對(duì)增量為7%,靜壓增加了12.5pa,相對(duì)增量為20%,效率提高了2.38%,相對(duì)增量為4.6%;而且分析發(fā)現(xiàn)葉頂附近的截面安裝角對(duì)葉輪的全壓影響大,葉根附近的截面安裝角對(duì)葉輪效率影響大。
[Abstract]:Many of the transformations between solar, wind, water, electricity, heat, mechanical energy and so on depend on impeller machinery, which is widely used in national life, such as chemicals, agriculture, metallurgy, mines, pharmaceuticals, etc. Power and other fields, and the most important type of machinery in turbomachinery is blower. Relevant data show that. Fan consumption in China accounts for about 12% of coal consumption. Axial fan has many advantages over centrifugal fan. Nowadays, in many key industries, key positions, The centrifugal fan is gradually replaced by the axial fan. Therefore, the research ability and design level of the axial fan are improved. It is of great significance to save energy and protect the environment. In order to understand the flow characteristics of the inner and outer flow field of axial-flow fan deeply, and adopt reasonable optimization method to optimize the axial-flow fan, In order to improve the aerodynamic performance of axial-flow fan, this paper takes two-stage axial fan as the research object. The influence of fan structure on the aerodynamic performance of axial flow fan and the distribution of flow field inside and outside the fan are studied by numerical simulation. In this paper, the aerodynamic performance of impeller is studied. The main results are as follows: 1) the flow between stages of two stage axial flow fan is studied. The results show that the flow characteristics between stages mainly depend on the rotating parts, that is to say, The first stage impeller has more influence on the flow between the impellers and the guide vane, the first stage impeller wake interference is stronger than the guide blade potential flow interference, and the second stage impeller has more influence on the interstage flow between the guide vane and the impeller stage. The influence of blade thickness on the aerodynamic performance of fan is studied. The results show that the change of blade thickness has great influence on the aerodynamic performance of fan. The thin blade fan has better aerodynamic performance, but the thick blade fan has a larger stable working range. The first stage impeller of the two-stage axial flow fan is optimized by changing the flow situation of the leading edge of the blade and the pressure distribution of the blade pressure surface. The installation angle of each section of the blade is taken as the optimized parameter. The axial flow impeller has been optimized by orthogonal test. The optimized blade can improve the aerodynamic performance of impeller greatly in the whole flow range, static pressure, total pressure and efficiency. The total pressure increased by 16.1 paa, the relative increment was 7, the static pressure increased 12.5 paa, the relative increment was 20, the efficiency increased 2.38 and the relative increment was 4.6. The cross section installation angle near the blade root has a great influence on the impeller efficiency.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH43
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅黎;王琪;袁明新;金琦淳;高進(jìn)可;;基于流固耦合的軸流風(fēng)機(jī)結(jié)構(gòu)分析與優(yōu)化[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年01期
2 郭湘錕;白濤;張少博;;尾緣厚度對(duì)渦輪葉柵性能影響的數(shù)值研究[J];燃?xì)鉁u輪試驗(yàn)與研究;2016年05期
3 楊敏官;李玉婷;倪丹;李長(zhǎng)軍;;混流式核主泵葉輪葉片厚度分布規(guī)律對(duì)能量性能的影響[J];流體機(jī)械;2016年09期
4 王曉東;梁麗萍;康順;張輝;;低速軸流渦輪轉(zhuǎn)靜子干涉的非定常數(shù)值模擬[J];推進(jìn)技術(shù);2016年07期
5 陳金鑫;賴(lài)煥新;;微型軸流風(fēng)扇下游靜子干涉下轉(zhuǎn)子區(qū)域非定常流場(chǎng)計(jì)算分析[J];風(fēng)機(jī)技術(shù);2016年03期
6 祝華云;徐志明;胡國(guó)軍;馮俊瑋;陳晶;任晟;;尾緣厚度對(duì)壓氣機(jī)葉柵氣動(dòng)性能的影響研究[J];機(jī)電工程;2016年02期
7 李超;顏培剛;韓萬(wàn)金;王慶超;韓萬(wàn)龍;;尾緣厚度對(duì)低壓渦輪氣動(dòng)性能影響的數(shù)值模擬[J];航空動(dòng)力學(xué)報(bào);2016年01期
8 馬建堂;;近期我國(guó)能源消費(fèi)呈現(xiàn)四大趨勢(shì)[J];財(cái)經(jīng)界;2015年09期
9 楊敏官;陸勝;高波;王達(dá);王俊;;葉片厚度對(duì)混流式核主泵葉輪能量性能影響研究[J];流體機(jī)械;2015年05期
10 楊策;張涵之;趙奔;馬朝臣;老大中;;軸流壓氣機(jī)勢(shì)流和尾跡相互干涉疊加效應(yīng)分析[J];工程熱物理學(xué)報(bào);2015年02期
相關(guān)碩士學(xué)位論文 前10條
1 吳文軍;后級(jí)轉(zhuǎn)子參數(shù)對(duì)雙轉(zhuǎn)子小型軸流風(fēng)扇氣動(dòng)性能及噪音的影響[D];浙江理工大學(xué);2016年
2 李燕飛;小展弦比燃?xì)鉁u輪二次流動(dòng)控制數(shù)值研究[D];哈爾濱工業(yè)大學(xué);2014年
3 唐釗;發(fā)動(dòng)機(jī)冷卻風(fēng)扇葉片參數(shù)的研究和優(yōu)化[D];華南理工大學(xué);2012年
4 武蒙;立式軸流泵曲線(xiàn)擴(kuò)管雙向出水流道數(shù)值優(yōu)化研究[D];揚(yáng)州大學(xué);2012年
5 鐘守山;發(fā)動(dòng)機(jī)冷卻風(fēng)扇造型設(shè)計(jì)與性能計(jì)算方法的研究[D];華南理工大學(xué);2011年
6 吳敏;發(fā)動(dòng)機(jī)冷卻風(fēng)扇性能計(jì)算方法的研究[D];華南理工大學(xué);2010年
7 朱亮;葉片厚度變化對(duì)軸流泵性能的影響[D];揚(yáng)州大學(xué);2008年
8 李麗麗;不同用途的葉輪機(jī)械內(nèi)部流場(chǎng)數(shù)值模擬分析及結(jié)構(gòu)優(yōu)化研究[D];大連理工大學(xué);2008年
9 樊曉芳;固液兩相流離心泵的設(shè)計(jì)與性能研究[D];華北電力大學(xué)(北京);2006年
10 肖朋;多級(jí)葉柵間相互干涉的三維定常數(shù)值模擬[D];華中科技大學(xué);2005年
,本文編號(hào):1695250
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1695250.html