金屬雙極板電磁微成形工藝研究
本文選題:電磁微成形 切入點:微沖孔 出處:《哈爾濱工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著微機電系統(tǒng)(Micro-electro-mechanical system,MEMS)技術(shù)的迅速發(fā)展,微通道類零件如微通道換熱器、微型燃料電池雙極板以及微生物芯片等在能源、微電子、航空航天和生物醫(yī)療等領(lǐng)域得到了廣泛應(yīng)用。電磁微成形技術(shù)是一種金屬利用強脈沖磁場中所受到的電磁力作用使之產(chǎn)生變形的高能率微塑性加工技術(shù),該技術(shù)能夠有效提高材料的延展性和成形極限,避免了微成形工藝對模具裝配精度的苛刻要求,成為一種重要的微型零件柔性成形方法。本文以燃料電池金屬雙極板為研究對象,通過實驗和有限元模擬相結(jié)合的方法研究金屬箔板電磁微脹形變形行為,分析工藝參數(shù)對金屬雙極板成形質(zhì)量的影響規(guī)律,揭示金屬箔板電磁微成形機理,實現(xiàn)微型燃料電池金屬雙極板的高質(zhì)量成形。首先利用ANSYS有限元模擬軟件中多物理場耦合分析模塊,建立金屬箔板電磁微脹形三維有限元模型,分析了金屬箔板在電磁微脹形過程電磁力分布規(guī)律和金屬箔板電磁微脹形變形特點。模擬結(jié)果顯示,金屬箔板在電磁微脹形過程中所受到的電磁力隨著放電能量的增大而增大,隨著放電電容的增大而降低,在箔板變形區(qū)域內(nèi)電磁力始終保持均勻分布。金屬箔板電磁微脹形過程中,沿微通道橫截面輪廓方向由通道邊緣到中間位置等效應(yīng)變分布逐漸增大,沿微通道縱向等效應(yīng)變分布均勻。陣列通道電磁微脹形過程中各通道等效應(yīng)變分布一致,模擬結(jié)果表明,電磁微成形技術(shù)能夠成形出一致性好的微通道零件。研制了基于均勻壓力線圈驅(qū)動的金屬箔板電磁微脹形實驗裝置,開展單通道電磁微脹形實驗研究。實驗結(jié)果顯示,隨著放電能量、放電次數(shù)以及放電頻率的增加,微通道成形性能顯著提高,而隨著箔板厚度和晶粒尺寸的增加,微通道成形性能降低。在電磁微脹形過程中使用凸模具或采用有較大圓角的凹模具均有利于提高金屬箔板電磁微脹形成形性能。進行了陣列通道電磁微脹形工藝研究。結(jié)果顯示,隨著放電能量和放電頻率增大,陣列通道脹形高度和均勻性提高,在放電能量7.2k J時陣列通道成形質(zhì)量好;材料性能對電磁微脹形工藝影響顯著,T2紫銅薄板屈服強度和電阻率小,陣列通道成形性能優(yōu)異,而SS304不銹鋼箔板屈服強度和電阻率較高,并且是典型的率相關(guān)材料,成形性能相對較低。進行了金屬箔板電磁微沖孔工藝實驗研究,對電磁微沖裁變形過程進行了分析,探討了工藝參數(shù)對微沖孔質(zhì)量的影響規(guī)律,揭示了金屬箔板電磁微沖裁斷裂機制。結(jié)果顯示,隨著放電能量增加、凹?讖皆龃,微孔斷面毛刺和圓角帶減小,而隨著坯料厚度增大,微孔斷面圓角帶增大,毛刺逐漸減小。SS304不銹鋼箔板沖裁斷裂模式為有韌窩的韌性斷裂,而T2紫銅箔板在電磁微沖孔過程中出現(xiàn)斷口平整的無韌窩拉伸斷裂、無韌窩的拉伸斷裂和有韌窩的拉伸斷裂等多種斷裂模式。微孔質(zhì)量檢測結(jié)果顯示,電磁微沖孔微孔輪廓尺寸精度較高、斷面質(zhì)量好,可以實現(xiàn)微孔的高效率、低成本、高質(zhì)量的生產(chǎn)加工。針對燃料電池金屬雙極板,進行了燃料電池金屬雙極板電磁微成形工藝實驗研究,分析了金屬雙極板電磁微成形過程中材料參數(shù)、放電參數(shù)和模具參數(shù)對雙極板成形質(zhì)量的影響規(guī)律,確定了雙極板最佳成形工藝,并對電磁成形金屬雙極板的成形質(zhì)量進行評價。實驗結(jié)果顯示,隨著放電能量增加雙極板微流道脹形高度和均勻性提高;隨著放電頻率的增大,雙極板微流道脹形高度增大,均勻性下降;坯料與模具之間的距離對雙極板微流道脹形高度和均勻性的影響表現(xiàn)為先增大后減小,在間距為1.0mm時雙極板成形質(zhì)量最佳;隨著坯料厚度的增大,雙極板微流道脹形高度和均勻性迅速降低。當(dāng)微模具脊寬比S/W1時,選用凸型模具,而脊寬比S/W≤1時,使用凹型模具進行雙極板成形可以獲得更高的質(zhì)量。在放電頻率7.424k Hz,放電能量為7.2k J條件下,采用脊寬比為2.0的凸型模具成形出質(zhì)量優(yōu)異的紫銅箔燃料電池雙極板。
[Abstract]:In recent years, with the development of microelectromechanical system (Micro-electro-mechanical system MEMS) the rapid development of technology, micro channel parts such as micro channel heat exchanger, micro fuel cell bipolar plate and microbe chip in energy, microelectronics, aerospace and biomedical and other fields has been widely used. The electromagnetic micro forming technology is a kind of metal utilization high energy rate strong pulse electromagnetic force by the magnetic field in the deformation of micro plastic forming technology, this technology can effectively improve the ductility and the forming limit of the material, avoid the micro forming process of die assembly precision demanding requirements has become one of the most important parts of micro flexible forming method. In this paper, metal bipolar in the fuel cell as the research object, research method of deformation behavior of metal foil electromagnetic by both experimental and finite element simulation of micro expansion, analysis of process parameters on double metal Influence of plate forming quality, reveal the electromagnetic metal foil micro forming mechanism, to realize the high quality metal bipolar plate of micro fuel cell forming. Firstly, multi physics finite element simulation software ANSYS coupled analysis module, a metal foil electromagnetic micro bulging three-dimensional finite element model of metal foil in micro electromagnetic the bulging process of electromagnetic force distribution and metal foil electromagnetic micro bulging deformation characteristics. The simulation results show that the electromagnetic force of metal foil by electromagnetic micro bulging process increases with the increase of discharge energy, reduce with the increase of discharge capacity and maintain uniform distribution in the electromagnetic force region foil the deformation of sheet metal foil. Electromagnetic micro bulging process, the micro channel cross-sectional contour direction from the channel edge to the middle position of the strain distribution gradually increased along the longitudinal micro channel strain distribution are Well. Array channel electromagnetic micro bulging process of each channel strain distribution, the simulation results show that the electromagnetic micro forming technology can form micro channel parts good consistency is developed. The electromagnetic metal foil driven uniform pressure coil micro bulging test device based on single channel, carry out electromagnetic micro bulging experiments. The experimental results show that the discharge energy, discharge times and discharge frequency increase, the micro channel forming performance is significantly improved, with the increase of foil thickness and grain size, micro channel forming performance decreased. In the micro electromagnetic bulging process using the convex mold or the concave mold has a large fillet to improve metal foil electromagnetic micro dome forming performance. The array electromagnetic micro bulging technology research. The results showed that with the increase of discharge energy and discharge frequency, array channel bulging height and uniformity. High energy 7.2k J array in the discharge channel forming good quality; effect of material properties on the electromagnetic micro bulging process of T2 copper sheet significantly, yield strength and low resistivity, excellent formability and channel array, SS304 stainless steel foil yield strength and high resistivity, and is typical of rate dependent material, forming a relatively low performance the electromagnetic metal foil. Experimental research of micro punching process, micro blanking deformation of electromagnetic process was analyzed and discussed the influences of process parameters on the micro punching quality, reveals the electromagnetic metal foil micro blanking cutting crack mechanism. The results show that with the increase of discharge energy, die size, microporous section burr and round with reduced, with the blank thickness increases with increase of micropore section fillet, burr decreases.SS304 stainless steel foil stamping with dimple fracture mode was ductile fracture, and T2 copper foil In the process of electromagnetic micro punching smooth fracture without dimple fracture, tensile fracture without dimple and dimple fracture mode. Tensile fracture and other test results show the quality of microporous, microporous electromagnetic micro punching contour size precision, section quality is good, can achieve high efficiency and low cost, micro, production high quality machining. For the metal bipolar plate of fuel cell, the electromagnetic metal bipolar plate of fuel cell technology experimental study on micro forming, analysis of electromagnetic micro forming process of metal bipolar plate material parameters, influence of discharge parameters and die parameters on forming quality of bipolar plate, the optimum forming process of bipolar plate, and electromagnetic forming quality of metal bipolar plate was investigated. Experimental results show that with the increase of discharge energy of bipolar plate micro channel bulging height and uniformity is improved with the increase of the frequency of discharge; Large, bipolar plate micro channel bulging height increases, the uniformity of decline; influence between blank and die from the bipolar plate micro channel bulging height and uniformity is increased first and then decreased in the space of 1.0mm bipolar plate forming the best quality; with the increase of blank thickness, bipolar plate micro channel bulging the height and uniformity decreased rapidly. When the micro mold ridge width is S/W1, the convex mould, and ridge width ratio S/W = 1, forming bipolar plate using concave die can obtain higher quality. In the discharge frequency of 7.424k Hz 7.2k J, the discharge energy conditions, the ridge width ratio the forming quality of copper foil fuel cell bipolar plate excellent convex die 2.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TH16;TM911.4
【參考文獻】
相關(guān)期刊論文 前3條
1 王山領(lǐng);隋升;陳守超;郭雪巖;;不銹鋼沖壓雙極板及其實驗驗證和仿真[J];電源技術(shù);2013年10期
2 吳海華;劉富林;李廳;黃川;;質(zhì)子交換膜燃料電池金屬雙極板制造方法綜述[J];電源技術(shù);2014年08期
3 龐桂兵;張峗閣;趙益昕;卜繁嶺;趙秀君;張志金;丁柏順;;高速率成形技術(shù)進展[J];大連工業(yè)大學(xué)學(xué)報;2014年05期
相關(guān)博士學(xué)位論文 前2條
1 劉會霞;激光驅(qū)動飛片加載金屬箔板間接沖擊微成形研究[D];江蘇大學(xué);2011年
2 彭林法;微/介觀尺度下薄板成形建模分析與實驗研究[D];上海交通大學(xué);2008年
相關(guān)碩士學(xué)位論文 前5條
1 李經(jīng)天;微細塑性成形實驗技術(shù)研究[D];華中科技大學(xué);2004年
2 賈蓮蓮;C2680黃銅箔微圓筒拉深工藝研究[D];哈爾濱工業(yè)大學(xué);2007年
3 郭yN;電磁微成形工藝研究[D];華北電力大學(xué)(北京);2009年
4 劉艷雄;燃料電池金屬雙極板軟模成形研究[D];武漢理工大學(xué);2010年
5 王晶晶;PEMFC薄金屬雙極板設(shè)計與加工的技術(shù)研究[D];浙江工業(yè)大學(xué);2012年
,本文編號:1606212
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1606212.html