離心壓縮系統(tǒng)反轉(zhuǎn)動力學(xué)特性研究與分析
本文選題:離心壓縮機(jī) 切入點:反轉(zhuǎn) 出處:《上海交通大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:當(dāng)前隨著設(shè)計、制造技術(shù)的進(jìn)步,在節(jié)能減排的要求下,離心式壓縮機(jī)向著大型化、高壓比的趨勢發(fā)展。大型多級離心壓縮機(jī)組的運行必然會出現(xiàn)新的系統(tǒng)運行問題,如系統(tǒng)調(diào)控、轉(zhuǎn)子動力學(xué)、流動部件匹配和機(jī)組啟動、停機(jī)控制等。由于大型流動系統(tǒng)中,流動管道多、容器大,系統(tǒng)慣性大,一般難以在短時間內(nèi)進(jìn)行流動參數(shù)的調(diào)節(jié)。在實際生產(chǎn)運行過程中,由于工藝的需要,流動系統(tǒng)中往往儲存著大量高壓氣體。一旦出現(xiàn)斷電情況,壓縮機(jī)組會因失去驅(qū)動力而停機(jī)。在這種情況下,壓縮機(jī)組出口段的氣體壓力會因為遠(yuǎn)大于進(jìn)口段的壓力,而從機(jī)組的出口段通過壓縮內(nèi)部流向入口段,產(chǎn)生系統(tǒng)逆流。氣體的逆向流動在壓縮機(jī)內(nèi)部會產(chǎn)生反向的轉(zhuǎn)動力矩,使機(jī)組轉(zhuǎn)速迅速下降,在該轉(zhuǎn)動力矩克服轉(zhuǎn)子的慣性力矩與氣動阻力矩后,會進(jìn)一步發(fā)生轉(zhuǎn)子反轉(zhuǎn)現(xiàn)象。壓縮機(jī)組的反轉(zhuǎn)會破壞軸承和級間密封,嚴(yán)重影響企業(yè)的正常生產(chǎn)秩序。因此,有必要對現(xiàn)有大型機(jī)組進(jìn)行反轉(zhuǎn)研究,提出有效的防反轉(zhuǎn)策略。針對實際企業(yè)發(fā)生的反轉(zhuǎn)事故,本文對離心壓縮系統(tǒng)進(jìn)行了簡化,建立離心風(fēng)機(jī)單轉(zhuǎn)子流動壓縮系統(tǒng)。該系統(tǒng)包括管道進(jìn)出口閥門、出口氣罐等。實驗測試基于LABVIEW軟件建立多通道實時數(shù)據(jù)采集系統(tǒng),可以得到離心風(fēng)機(jī)前后管道壓力、流量與轉(zhuǎn)速。實驗研究了風(fēng)機(jī)轉(zhuǎn)子在惰走情況下氣動和摩擦阻力對轉(zhuǎn)速的影響,建立了考慮工質(zhì)氣動力矩、軸承摩擦力矩的轉(zhuǎn)子轉(zhuǎn)速變化模型。對實驗轉(zhuǎn)速與根據(jù)轉(zhuǎn)子轉(zhuǎn)速變化模型的到的計算轉(zhuǎn)速進(jìn)行對比,驗證了轉(zhuǎn)子轉(zhuǎn)速變化模型的準(zhǔn)確性。對離心葉輪的結(jié)構(gòu)分步進(jìn)行簡化得到轉(zhuǎn)動慣量的表達(dá)式,根據(jù)簡化固定容器的充放氣模型得到逆流流量的變化規(guī)律,并分析了逆流閥門的調(diào)節(jié)對逆流流動特性的影響。對比相同轉(zhuǎn)速變化范圍內(nèi),正反轉(zhuǎn)情況下作用于轉(zhuǎn)子的扭矩、功率規(guī)律,說明反轉(zhuǎn)對離心轉(zhuǎn)子破壞的可能性加大。根據(jù)離心風(fēng)機(jī)單轉(zhuǎn)子實驗和理論分析結(jié)果,對某石化企業(yè)的乙烯裝置裂解氣離心壓縮機(jī)組發(fā)生反轉(zhuǎn)情況下各段進(jìn)出口流動參數(shù)進(jìn)行了分析,結(jié)合流動壓縮系統(tǒng)模型建立了由多級離心葉輪轉(zhuǎn)動慣量、初始轉(zhuǎn)速和防喘閥開度影響下的逆流驅(qū)動轉(zhuǎn)子轉(zhuǎn)速變化模型。將該模型應(yīng)用于實際大型多級離心壓縮機(jī)組的轉(zhuǎn)子反轉(zhuǎn)動力學(xué)分析中,可以得到抑制其反轉(zhuǎn)的運轉(zhuǎn)參數(shù)。本文所建立的理論模型可以通過實驗結(jié)果和運行數(shù)據(jù)進(jìn)行驗證,可為大型離心壓縮機(jī)的防反轉(zhuǎn)提供策略。
[Abstract]:At present, with the development of design and manufacturing technology, under the requirement of energy saving and emission reduction, the centrifugal compressor is developing towards a large scale and high pressure ratio. Such as system control, rotor dynamics, flow component matching, unit start-up, shutdown control, etc. In large flow systems, there are many flowing pipes, large containers, and large inertia of the system. Generally, it is difficult to adjust the flow parameters in a short period of time. In the actual operation process, due to the need of the process, a large number of high pressure gases are often stored in the flow system. The compressor unit will be shut down because of the loss of driving force. In this case, the gas pressure at the outlet section of the compressor unit will be much greater than the pressure in the inlet section, and the outlet section of the compressor unit will flow from the outlet section of the unit to the inlet section through the compression inside, The reverse flow of gas in the compressor will produce reverse rotation torque, which will cause the unit speed to drop rapidly. After the moment overcomes the inertia moment and aerodynamic resistance moment of the rotor, The reverse of the compressor unit will destroy the bearing and the seal between stages, which will seriously affect the normal production order of the enterprise. Therefore, it is necessary to carry out reverse research on the existing large units. An effective anti-inversion strategy is put forward. The centrifugal compression system is simplified and the single rotor flow compression system of centrifugal fan is established. The system includes pipeline inlet and outlet valve. The multi-channel real-time data acquisition system based on LABVIEW software can be established to obtain the pressure of the front and rear pipes of the centrifugal fan. The effects of aerodynamic and friction resistance on the speed of the fan rotor under the condition of idling walk are studied experimentally, and the aerodynamic moment of the fan rotor considering the working fluid is established. The rotor speed variation model of bearing friction torque. The comparison between the experimental speed and the calculated speed according to the rotor speed change model is carried out. The accuracy of rotor speed change model is verified. The formula of moment of inertia is obtained by simplifying the structure of centrifugal impeller, and the variation law of countercurrent flow is obtained according to the simplified gas filling and discharging model of fixed vessel. The effect of countercurrent valve regulation on countercurrent flow characteristics is analyzed. Compared with the torque and power law of rotor acting on the rotor under positive and reverse rotating speed in the same speed range, According to the results of single rotor experiment and theoretical analysis of centrifugal fan, In this paper, the inlet and outlet flow parameters of cracking gas centrifugal compressor unit in a petrochemical enterprise are analyzed, and the rotational inertia of multi-stage centrifugal impeller is established by combining with the flow compression system model. The rotor speed change model of countercurrent driven rotor under the influence of initial speed and the opening of anti-surge valve is applied to the rotor inversion dynamics analysis of large scale multi-stage centrifugal compressor unit. The theoretical model established in this paper can be verified by experimental results and operation data and can provide a strategy for anti-inversion of large centrifugal compressors.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH452
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭權(quán);離心壓縮機(jī)組狀態(tài)監(jiān)測故障診斷系統(tǒng)的開發(fā)[J];企業(yè)技術(shù)開發(fā);2000年05期
2 任建民;離心壓縮機(jī)組故障原因分析[J];山西化工;2000年01期
3 舒東;應(yīng)用一次故障原因分析法對離心壓縮機(jī)組進(jìn)行故障診斷[J];設(shè)備管理&維修;2000年03期
4 潘德勝,李榮良;大型離心壓縮機(jī)組的故障與處理[J];中氮肥;2005年06期
5 翁剛;;高速離心壓縮機(jī)組失穩(wěn)狀態(tài)分析及對策[J];石油化工設(shè)備技術(shù);2006年04期
6 陳蘭英;郝點;錢小平;;離心壓縮機(jī)組事故樹——模糊綜合評價分析研究[J];石油和化工設(shè)備;2009年10期
7 張富春;譚永前;李曉剛;王麗;周炎焱;;大流量氨冷凍離心壓縮機(jī)組的設(shè)計[J];風(fēng)機(jī)技術(shù);2011年03期
8 賈旭濤;郭阿靜;鄧?yán)^祖;安婷婷;翟天奎;周聰勇;;大型空分等溫離心壓縮機(jī)組控制系統(tǒng)設(shè)計應(yīng)用[J];工業(yè)儀表與自動化裝置;2012年05期
9 何永勇;許飛云;張雪江;賈民平;鐘秉林;;離心壓縮機(jī)組狀態(tài)分析系統(tǒng)的研究[J];振動、測試與診斷;1996年01期
10 何廣平;離心壓縮機(jī)組緊急停車及安全連鎖系統(tǒng)設(shè)計研究[J];風(fēng)機(jī)技術(shù);2004年02期
相關(guān)會議論文 前1條
1 盧鵬飛;;選用先進(jìn)的無級變速機(jī)械裝置是電動機(jī)驅(qū)動循環(huán)氫離心壓縮機(jī)組的最佳選擇[A];2006年中國機(jī)械工程學(xué)會年會暨中國工程院機(jī)械與運載工程學(xué)部首屆年會論文集[C];2006年
相關(guān)重要報紙文章 前5條
1 方怡 沈永華;國內(nèi)首套三軸離心壓縮機(jī)組試車成功 [N];中國工業(yè)報;2004年
2 羅冰;沈陽企業(yè)成為科技研發(fā)創(chuàng)新主體[N];科技日報;2005年
3 方怡;國內(nèi)首套三軸型齒輪式離心壓縮機(jī)組[N];中國冶金報;2004年
4 孫潛彤;沈鼓多項核心技術(shù)填補國內(nèi)空白[N];經(jīng)濟(jì)日報;2007年
5 吳翠蓮;風(fēng)風(fēng)火火的“女專家”[N];中國石化報;2006年
相關(guān)博士學(xué)位論文 前1條
1 丁克北;離心壓縮機(jī)組振動智能診斷關(guān)鍵技術(shù)研究[D];大慶石油學(xué)院;2005年
相關(guān)碩士學(xué)位論文 前7條
1 陳蘭英;大型離心壓縮機(jī)組風(fēng)險評估及安全運行管理研究[D];中國石油大學(xué);2010年
2 聶輔亮;離心壓縮系統(tǒng)反轉(zhuǎn)動力學(xué)特性研究與分析[D];上海交通大學(xué);2015年
3 劉良順;離心壓縮機(jī)組熱力性能監(jiān)測與故障診斷[D];大連理工大學(xué);2005年
4 趙志玲;丙烷氣離心壓縮機(jī)組設(shè)計中的若干關(guān)鍵技術(shù)研究[D];東北大學(xué);2008年
5 王宇;離心壓縮機(jī)組控制系統(tǒng)的研究與設(shè)計[D];東北大學(xué);2012年
6 付常佳;大型離心壓縮機(jī)組噪聲測試與分析[D];沈陽工業(yè)大學(xué);2009年
7 葉凡;空壓機(jī)在線監(jiān)測診斷控制系統(tǒng)的研制[D];重慶大學(xué);2008年
,本文編號:1560173
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1560173.html