天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)電工程論文 >

基于EEMD-KECA的風(fēng)電機(jī)組滾動(dòng)軸承故障診斷

發(fā)布時(shí)間:2018-01-09 20:11

  本文關(guān)鍵詞:基于EEMD-KECA的風(fēng)電機(jī)組滾動(dòng)軸承故障診斷 出處:《太陽能學(xué)報(bào)》2017年07期  論文類型:期刊論文


  更多相關(guān)文章: 故障診斷 聚合經(jīng)驗(yàn)?zāi)B(tài)分解 核熵成分分析 能量熵 滾動(dòng)軸承


【摘要】:針對傳統(tǒng)頻域診斷算法不能充分挖掘出非線性、非平穩(wěn)信號內(nèi)部本質(zhì)信息的問題,提出基于聚合經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)的復(fù)合特征提取和基于核熵成分分析(KECA)的故障自動(dòng)診斷算法。該方法首先采用EEMD將原始信號分解成若干特征模態(tài)函數(shù)(IMF),計(jì)算IMF能量和信號的能量熵構(gòu)建復(fù)合特征向量并作為KECA的輸入,之后建立KECA非線性分類器并引入一種新的監(jiān)測統(tǒng)計(jì)量——散度測度統(tǒng)計(jì)量,實(shí)現(xiàn)故障的實(shí)時(shí)監(jiān)測與自動(dòng)診斷。采用KECA可實(shí)現(xiàn)根據(jù)熵值大小進(jìn)行特征分類,具有較強(qiáng)的非線性處理能力,且不同特征信息之間呈現(xiàn)出顯著的角度差異,易于分類。最后通過實(shí)際風(fēng)電機(jī)組滾動(dòng)軸承應(yīng)用實(shí)例對算法進(jìn)行驗(yàn)證,結(jié)果表明該方法可有效提取信號中的故障特征,實(shí)現(xiàn)對滾動(dòng)軸承的故障診斷,相比神經(jīng)網(wǎng)絡(luò)分類方法具有更高的識別率。
[Abstract]:To solve the problem that the traditional frequency domain diagnosis algorithm can not fully excavate the internal essential information of nonlinear and non-stationary signals. Composite feature extraction based on polymeric empirical mode decomposition (EEMD) and kernel entropy component analysis (KECA) are proposed. The method firstly decomposes the original signal into several characteristic mode functions by EEMD. The energy entropy of IMF and signal is calculated to construct the compound eigenvector as the input of KECA, and then the nonlinear classifier of KECA is established and a new statistical measure of divergence is introduced. KECA can be used to classify features according to entropy value, which has strong nonlinear processing ability, and there are significant angle differences among different feature information. It is easy to classify. Finally, the algorithm is verified by the actual wind turbine rolling bearing application example. The results show that the method can effectively extract the fault features from the signal and realize the fault diagnosis of the rolling bearing. Compared with the neural network classification method, it has a higher recognition rate.
【作者單位】: 內(nèi)蒙古工業(yè)大學(xué)電力學(xué)院;內(nèi)蒙古北方龍?jiān)达L(fēng)力發(fā)電有限責(zé)任公司;北京工業(yè)大學(xué)電子信息與控制工程學(xué)院;
【基金】:國家自然科學(xué)基金(61364009;21466026) 內(nèi)蒙古自然科學(xué)基金(2015MS0615) 校級重點(diǎn)項(xiàng)目(X201424)
【分類號】:TH133.3;TM315
【正文快照】: 0引言滾動(dòng)軸承是旋轉(zhuǎn)機(jī)械的主要部件之一,具有效率高、摩擦阻力小、裝配簡單、易潤滑等優(yōu)點(diǎn),因此被廣泛應(yīng)用于風(fēng)力發(fā)電機(jī)傳動(dòng)鏈系統(tǒng),是該系統(tǒng)中應(yīng)用最普遍、使用最多,也是最易損傷的部件之一。風(fēng)電機(jī)組傳動(dòng)鏈中的許多故障都與滾動(dòng)軸承有密切關(guān)系,據(jù)統(tǒng)計(jì)約30%的機(jī)械故障與軸承,

本文編號:1402460

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1402460.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c4eda***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com