基于客戶(hù)價(jià)值細(xì)分的A電商企業(yè)CRM系統(tǒng)優(yōu)化
本文選題:電商企業(yè) + 客戶(hù)價(jià)值 ; 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:在網(wǎng)絡(luò)經(jīng)濟(jì)迅猛發(fā)展、市場(chǎng)競(jìng)爭(zhēng)日益加劇的背景下,客戶(hù)在企業(yè)中所扮演的角色和所處的地位都發(fā)生了翻天覆地的變化,客戶(hù)對(duì)于企業(yè)未來(lái)的生存發(fā)展都起著決定性的作用。企業(yè)成功的關(guān)鍵是確定企業(yè)的客戶(hù),并成功獲取客戶(hù),對(duì)客戶(hù)進(jìn)行合理的客戶(hù)分類(lèi)是企業(yè)與客戶(hù)之間建立良好的關(guān)系、并和諧發(fā)展的前提條件,也是非常重要的條件。電商企業(yè)近年來(lái)發(fā)展迅速,越來(lái)越多的電商企業(yè)破土而出,進(jìn)入人們的視野,A電商企業(yè)面臨的市場(chǎng)競(jìng)爭(zhēng)越來(lái)越大。A電商企業(yè)面臨著以產(chǎn)品為中心向客戶(hù)數(shù)據(jù)為中心的模式轉(zhuǎn)變,對(duì)客戶(hù)進(jìn)行合理的細(xì)分成為了這一巨大轉(zhuǎn)變的前提和基礎(chǔ)。在擁有大量客戶(hù)行為數(shù)據(jù)的情況下,如何對(duì)客戶(hù)進(jìn)行合理的細(xì)分,并為不同類(lèi)型的客戶(hù)提供符合其特點(diǎn)的服務(wù),從而更好地維系與客戶(hù)之間的關(guān)系,并為企業(yè)帶來(lái)更多的利潤(rùn),已成為了 A電商企業(yè)眼下急需解決的問(wèn)題。本文通過(guò)分析當(dāng)前A電商企業(yè)客戶(hù)關(guān)系管理中存在的問(wèn)題,發(fā)現(xiàn)對(duì)該客戶(hù)關(guān)系管理系統(tǒng)優(yōu)化的必要性,并進(jìn)一步選取合適的指標(biāo),進(jìn)行對(duì)A電商企業(yè)客戶(hù)生命周期價(jià)值模型的構(gòu)建,在分析K-means聚類(lèi)分析算法不足的基礎(chǔ)上對(duì)其改進(jìn),利用改進(jìn)后的K-means算法對(duì)A電商企業(yè)的客戶(hù)進(jìn)行客戶(hù)細(xì)分,然后對(duì)當(dāng)前客戶(hù)關(guān)系管理系統(tǒng)在客戶(hù)細(xì)分方面存在的缺陷進(jìn)行優(yōu)化。主要工作如下:構(gòu)建客戶(hù)價(jià)值的量化模型。通過(guò)選取更加契合A電商企業(yè)的指標(biāo),以客戶(hù)關(guān)系管理理論為基礎(chǔ),構(gòu)建A電商企業(yè)的客戶(hù)價(jià)值模型,為后續(xù)的研究奠定基礎(chǔ)。基于客戶(hù)價(jià)值模型進(jìn)行客戶(hù)細(xì)分。剖析聚類(lèi)分析經(jīng)典算法K-means算法,闡述其基本的思想和流程,從而分析其存在的不足之處,提出改進(jìn)算法,并進(jìn)一步對(duì)A電商企業(yè)的客戶(hù)進(jìn)行細(xì)分?蛻(hù)關(guān)系管理系統(tǒng)的優(yōu)化。利用細(xì)分后的結(jié)果,對(duì)客戶(hù)關(guān)系管理系統(tǒng)在客戶(hù)細(xì)分方面存在的不足進(jìn)行優(yōu)化,從而提高企業(yè)客戶(hù)滿(mǎn)意度和留存率,實(shí)現(xiàn)最佳的客戶(hù)關(guān)系管理。
[Abstract]:Under the background of rapid development of network economy and increasing market competition, the role and position of customers in enterprises have changed dramatically, and customers play a decisive role in the future survival and development of enterprises. The key to the success of an enterprise is to determine the customer of the enterprise and obtain the customer successfully. The reasonable classification of the customer is the prerequisite for the establishment of a good relationship and the harmonious development between the enterprise and the customer, and is also a very important condition. With the rapid development of e-commerce enterprises in recent years, more and more e-commerce enterprises have stepped out of the ground and entered the field of vision. The market competition faced by e-commerce enterprises is increasing. A e-commerce enterprises are facing a transformation from product-centered to customer-data-centric. A reasonable breakdown of the customer has become the premise and basis of this huge change. In the case of having a large number of customer behavior data, how to segment the customer reasonably and provide different types of customer with the service according to their characteristics, so as to better maintain the relationship with the customer, and bring more profits for the enterprise. It has become a problem urgently needed to be solved at present by A e-commerce enterprises. Based on the analysis of the problems existing in customer relationship management (CRM) in E-business enterprises, this paper finds out the necessity of optimizing the CRM system, and further selects appropriate indicators. On the basis of analyzing the insufficiency of K-means clustering analysis algorithm, the customer life cycle value model of A ecommerce enterprise is constructed, and the improved K-means algorithm is used to segment the customers of A e-commerce enterprise. Then the defects of current customer relationship management system in customer segmentation are optimized. The main work is as follows: build the quantitative model of customer value. Based on the theory of customer relationship management, the customer value model of E-Commerce A enterprise is constructed by selecting more suitable indexes for E-business enterprise, which will lay a foundation for further research. Customer segmentation based on customer value model. This paper analyzes the classical clustering analysis algorithm K-means algorithm, expounds its basic idea and flow, analyzes its shortcomings, proposes an improved algorithm, and further subdivides the customers of A e-commerce enterprise. Customer relationship management system optimization. By using the result of subdivision, the shortcomings of customer relationship management system in customer segmentation are optimized, so as to improve customer satisfaction and retention rate, and realize the best customer relationship management.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:F274;F724.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡尚霖;;中國(guó)電子商務(wù)與傳統(tǒng)商務(wù)的碰撞[J];企業(yè)改革與管理;2015年20期
2 李洪霞;;財(cái)產(chǎn)保險(xiǎn)公司通過(guò)客戶(hù)細(xì)分提供更好的服務(wù)[J];赤子(上中旬);2015年09期
3 孫卓;;k-均值聚類(lèi)算法及其應(yīng)用[J];農(nóng)業(yè)網(wǎng)絡(luò)信息;2013年07期
4 蔡淑琴;馬玉濤;王瑞;;在線(xiàn)口碑傳播的意見(jiàn)領(lǐng)袖識(shí)別方法研究[J];中國(guó)管理科學(xué);2013年02期
5 徐翔斌;王佳強(qiáng);涂歡;穆明;;基于改進(jìn)RFM模型的電子商務(wù)客戶(hù)細(xì)分[J];計(jì)算機(jī)應(yīng)用;2012年05期
6 仝雪姣;孟凡榮;王志曉;;對(duì)k-means初始聚類(lèi)中心的優(yōu)化[J];計(jì)算機(jī)工程與設(shè)計(jì);2011年08期
7 孫可;劉杰;王學(xué)穎;;K均值聚類(lèi)算法初始質(zhì)心選擇的改進(jìn)[J];沈陽(yáng)師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
8 汪中;劉貴全;陳恩紅;;一種優(yōu)化初始中心點(diǎn)的K-means算法[J];模式識(shí)別與人工智能;2009年02期
9 王玲;薄列峰;焦李成;;密度敏感的譜聚類(lèi)[J];電子學(xué)報(bào);2007年08期
10 王莉,張朋柱;網(wǎng)絡(luò)環(huán)境下產(chǎn)品開(kāi)發(fā)中企業(yè)和客戶(hù)交互的形式和內(nèi)容[J];上海管理科學(xué);2004年05期
相關(guān)碩士學(xué)位論文 前7條
1 崔丹丹;K-Means聚類(lèi)算法的研究與改進(jìn)[D];安徽大學(xué);2012年
2 喬中杰;B2C電子商務(wù)網(wǎng)站顧客價(jià)值及其應(yīng)用研究[D];北京化工大學(xué);2011年
3 計(jì)海斌;基于改進(jìn)RFM模型的應(yīng)用研究[D];吉林大學(xué);2010年
4 梅立群;語(yǔ)文周報(bào)社客戶(hù)管理策略研究[D];河北科技大學(xué);2010年
5 孫江坤;移動(dòng)行業(yè)集團(tuán)客戶(hù)價(jià)值評(píng)估模型的構(gòu)建及應(yīng)用[D];同濟(jì)大學(xué);2008年
6 周涓;基于最大最小距離法的多中心聚類(lèi)算法研究[D];重慶大學(xué);2006年
7 許葉軍;基于BP神經(jīng)網(wǎng)絡(luò)的交互式賦權(quán)法及應(yīng)用研究[D];東南大學(xué);2005年
,本文編號(hào):1854291
本文鏈接:http://www.sikaile.net/jingjilunwen/xmjj/1854291.html