基于R軟件的關(guān)聯(lián)規(guī)則算法在購(gòu)物籃分析中的應(yīng)用
本文選題:數(shù)據(jù)挖掘 + 關(guān)聯(lián)規(guī)則; 參考:《華中師范大學(xué)》2017年碩士論文
【摘要】:隨著計(jì)算機(jī)科學(xué)技術(shù)的不斷向前發(fā)展,人類(lèi)的生活變得越來(lái)越智能化,人類(lèi)正進(jìn)入一個(gè)全新的信息化、科技化的時(shí)代。在信息化的今天,數(shù)據(jù)的獲取成為一件相對(duì)簡(jiǎn)單的事情。其原因在于數(shù)字化技術(shù)的廣泛應(yīng)用;此外,互聯(lián)網(wǎng)的普及應(yīng)用,網(wǎng)民的數(shù)量越來(lái)越多,從而給人類(lèi)帶來(lái)了海量的信息,也為人類(lèi)的研究和探索提拱了便利。數(shù)據(jù)挖掘是從數(shù)據(jù)中挖掘出有價(jià)值的、人類(lèi)所不知道的信息,而關(guān)聯(lián)規(guī)則算法挖掘就是其研究和探索的一個(gè)重要領(lǐng)域。本文簡(jiǎn)單介紹了關(guān)聯(lián)規(guī)則算法的一些基本概念,并探討分析了其在“購(gòu)物籃分析”中的應(yīng)用。國(guó)內(nèi)外研究者研究了數(shù)據(jù)挖掘與“購(gòu)物籃分析”在超市中的關(guān)系,并研究一系列問(wèn)題。如采取怎樣的銷(xiāo)售策略、怎樣去銷(xiāo)售產(chǎn)品以及在超市中如何擺放產(chǎn)品等進(jìn)行了大量的研究。在上述的背景下。本文主要是希望對(duì)關(guān)聯(lián)規(guī)則算法進(jìn)行深入的研究,及其在“購(gòu)物籃分析”中的實(shí)現(xiàn)問(wèn)題,以及把分析出的結(jié)果如何應(yīng)用到實(shí)際決策中。本文主要進(jìn)行了以下探討:(1)對(duì)數(shù)據(jù)挖掘技術(shù)的項(xiàng)目背景及國(guó)內(nèi)外現(xiàn)狀做了簡(jiǎn)單介紹,探討了其應(yīng)用領(lǐng)域的廣泛性、效益性,并提出該技術(shù)在超市中的作用。(2)接下來(lái),簡(jiǎn)單介紹了數(shù)據(jù)挖掘的一些相關(guān)概念,及其在理論上探討數(shù)據(jù)挖掘的任務(wù)。在此基礎(chǔ)上,介紹了實(shí)際工作中,其挖掘的一般性流程。(3)接著,對(duì)關(guān)聯(lián)規(guī)則算法進(jìn)行了全面的分析,特別是對(duì)經(jīng)典的Apirori算法進(jìn)行深徹的剖析和研究。并就其經(jīng)典算法進(jìn)行舉例分析。(4)關(guān)聯(lián)規(guī)則應(yīng)用性研究。就是將關(guān)聯(lián)規(guī)則算法與“購(gòu)物籃分析”的實(shí)際問(wèn)題相結(jié)合。首先,對(duì)“購(gòu)物籃分析”的基本理論和方法進(jìn)行了簡(jiǎn)單介紹,用R軟件進(jìn)行頻繁項(xiàng)集的生成,再根據(jù)頻繁項(xiàng)集生成關(guān)聯(lián)規(guī)則,并將關(guān)聯(lián)規(guī)則結(jié)果可視化,并利用商品之間互相的聯(lián)系,實(shí)現(xiàn)了商品擺放次序的優(yōu)化。對(duì)分析的過(guò)程和結(jié)果進(jìn)行了闡述和說(shuō)明,從而為超市在決策時(shí)提拱了更多理論支持。
[Abstract]:With the continuous development of computer science and technology, human life has become more and more intelligent, and mankind is entering a new era of information, science and technology.In the information of today, the acquisition of data has become a relatively simple thing.The reason lies in the wide application of digital technology; in addition, with the popularization of the Internet, the number of Internet users is increasing, which brings massive information to human beings, and also facilitates the research and exploration of human beings.Data mining is a kind of valuable and unknown information from data, and association rule mining is an important field of research and exploration.This paper briefly introduces some basic concepts of association rule algorithm and discusses its application in shopping basket analysis.Researchers at home and abroad have studied the relationship between data mining and shopping basket analysis in supermarkets and a series of problems.Such as how to take the sales strategy, how to sell products and how to put products in the supermarket and so on a lot of research.Against the above background.In this paper, we hope to study the association rules algorithm and its implementation in "shopping basket analysis", as well as how to apply the analysis results to the actual decision-making.This paper mainly discusses the project background of data mining technology and the present situation at home and abroad, discusses its wide application and benefit, and puts forward the function of this technology in supermarket.This paper briefly introduces some related concepts of data mining, and discusses the task of data mining in theory.On this basis, the general process of mining is introduced. Then, the association rule algorithm is analyzed comprehensively, especially the classical Apirori algorithm.An example is given to analyze the application of association rules.It is to combine the association rule algorithm with the practical problem of shopping basket analysis.Firstly, the basic theory and method of "shopping basket analysis" are introduced briefly. The frequent itemsets are generated by R software, then association rules are generated according to frequent itemsets, and the results of association rules are visualized.By using the relationship between commodities, the order of commodity placement is optimized.The process and results of the analysis are expounded and explained, thus providing more theoretical support for supermarket decision-making.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP311.13;F274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉明會(huì);韓朝;;基于關(guān)聯(lián)規(guī)則Apriori算法進(jìn)行購(gòu)物籃分析[J];中國(guó)商貿(mào);2014年09期
2 余文禮;;基于Apriori算法和關(guān)聯(lián)度指標(biāo)的購(gòu)物籃分析[J];科技視界;2014年04期
3 張成叔;;數(shù)據(jù)挖掘中關(guān)聯(lián)規(guī)則挖掘方法的研究及應(yīng)用[J];軟件;2013年09期
4 寇香霞;任永功;宋奎勇;;一種基于滑動(dòng)窗口的數(shù)據(jù)流頻繁項(xiàng)集挖掘算法[J];計(jì)算機(jī)應(yīng)用與軟件;2013年01期
5 王冬秀;;關(guān)聯(lián)規(guī)則挖掘的Apriori算法的改進(jìn)與應(yīng)用[J];廣西工學(xué)院學(xué)報(bào);2012年04期
6 任劍嵐;;數(shù)據(jù)挖掘技術(shù)應(yīng)用案例的分析[J];信息通信;2012年06期
7 李春梅;李艾丹;薛中玉;韓爽;;Web數(shù)據(jù)挖掘中數(shù)據(jù)異構(gòu)問(wèn)題解決方法的研究[J];中國(guó)科技資源導(dǎo)刊;2012年04期
8 劉以堂;張述成;;關(guān)聯(lián)規(guī)則在稅收征管中的應(yīng)用[J];科技創(chuàng)新導(dǎo)報(bào);2012年17期
9 王娟;李卓娥;;基于敘詞表的K-means文本聚類(lèi)修正方法[J];情報(bào)雜志;2011年12期
10 孟盛;;SQL Server數(shù)據(jù)庫(kù)安全系統(tǒng)分析[J];價(jià)值工程;2011年12期
相關(guān)碩士學(xué)位論文 前1條
1 劉錫鈴;關(guān)聯(lián)規(guī)則挖掘算法及其在購(gòu)物籃分析中的應(yīng)用研究[D];蘇州大學(xué);2009年
,本文編號(hào):1772855
本文鏈接:http://www.sikaile.net/jingjilunwen/xmjj/1772855.html