天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

公開(kāi)信息對(duì)P2P網(wǎng)絡(luò)借貸行為的影響及信息甄別

發(fā)布時(shí)間:2018-06-04 18:08

  本文選題:P2P網(wǎng)絡(luò)借貸 + 公開(kāi)信息 ; 參考:《華僑大學(xué)》2017年碩士論文


【摘要】:業(yè)內(nèi)將2013年稱(chēng)為互聯(lián)網(wǎng)金融元年,這一年在互聯(lián)網(wǎng)快車(chē)的帶動(dòng)下,金融行業(yè)迅速衍生出了一系列創(chuàng)新活動(dòng)。2007年6月,國(guó)內(nèi)第一家P2P網(wǎng)絡(luò)借貸平臺(tái)“拍拍貸”成功創(chuàng)立,緊接著與之具有同樣業(yè)務(wù)形態(tài)的紅嶺創(chuàng)投、人人貸等平臺(tái)也先后出現(xiàn),P2P網(wǎng)絡(luò)借貸作為一種新的融資渠道正在蓬勃發(fā)展;I資人在平臺(tái)借款時(shí)要提供個(gè)人信息等相關(guān)資料,這些信息會(huì)在借款標(biāo)的頁(yè)面公開(kāi)顯示。由于金融市場(chǎng)中信息不對(duì)稱(chēng)普遍存在,P2P網(wǎng)絡(luò)借貸平臺(tái)發(fā)揮的雖是金融中介作用,但多數(shù)只是對(duì)籌資人提供的材料進(jìn)行審核,因此籌資人為了提高借款成功率可能會(huì)隱瞞自身情況或提供虛假信息,投資人在選擇借款標(biāo)的時(shí)需要對(duì)公開(kāi)信息的真實(shí)性進(jìn)行甄別。本文使用Probit模型,在模型中加入了籌資人的網(wǎng)絡(luò)聲譽(yù)、工作狀況和借款描述變量,并創(chuàng)新性的使用句讀對(duì)借款描述的文本可讀性進(jìn)行量化,以人人貸平臺(tái)數(shù)據(jù)為基礎(chǔ),研究公開(kāi)信息對(duì)P2P網(wǎng)絡(luò)借貸行為(包括借款成功和還款違約)的影響,并通過(guò)對(duì)比兩者的影響因素,觀察是否存在信息噪音,即對(duì)投資人而言具一定欺騙性的信息,從而幫助投資者進(jìn)行信息甄別。研究結(jié)果顯示:(1)籌資人的網(wǎng)絡(luò)聲譽(yù)影響借款成功率,且能夠客觀反映其違約風(fēng)險(xiǎn),為投資人提供較為準(zhǔn)確的參考信息。籌資人的借款還清率越高、逾期次數(shù)越少,表明其違約風(fēng)險(xiǎn)越低,因而較受投資人的青睞,借款成功率較高。(2)籌資人所提供的工作狀況等個(gè)人信息影響借款成功率,但在揭示還款違約方面存在信息噪音。對(duì)于一些難以認(rèn)證的個(gè)人信息(如公司規(guī)模、收入),籌資人可能存在虛假披露情況,此類(lèi)信息將會(huì)對(duì)投資人造成干擾,使其不能準(zhǔn)確判斷籌資人的違約風(fēng)險(xiǎn)。(3)借款描述影響借款成功率,但在揭示籌資人違約風(fēng)險(xiǎn)方面存在信息噪音。借款描述的字?jǐn)?shù)越多、文本可讀性越強(qiáng),則借款成功率越高。但財(cái)務(wù)狀況或誠(chéng)信水平較差的籌資人可能會(huì)借此進(jìn)行偽裝,提供虛假的借款描述來(lái)欺騙投資人。
[Abstract]:The industry called 2013 the first year of Internet finance, led by the Internet Express, quickly spawned a series of innovative activities. In June 2007, PPDAI, the country's first P2P online lending platform, was founded successfully. Then with the same business form of Hongling Venture, people loan and other platforms have emerged P2P network lending as a new financing channel is booming. The fundraiser should provide personal information and other relevant information when borrowing on the platform, which will be publicly displayed on the loan subject page. Because of the widespread information asymmetry in financial markets, P2P network lending platforms play a financial intermediary role, but most of them only audit the materials provided by the financiers. Therefore, in order to improve the success rate of borrowing, the financier may conceal his own information or provide false information, and investors should identify the authenticity of the public information when selecting the subject matter of the loan. This paper uses Probit model to add the network reputation, work condition and loan description variables of the fundraiser, and innovatively uses sentence reading to quantify the readability of the loan description, which is based on the data of everyone's loan platform. This paper studies the influence of public information on P2P network borrowing behavior (including loan success and repayment default), and by comparing the two factors, we observe whether there is information noise, that is, information that is deceptive to investors. To help investors identify information. The research results show that the network reputation of the fundraiser affects the success rate of borrowing, and can objectively reflect the default risk, and provide more accurate reference information for investors. The higher the repayment rate and the less overdue, the lower the risk of default, and therefore more favored by investors. The higher the success rate of borrowing is, the higher the personal information such as the working condition provided by the financier affects the success rate of borrowing. But there is information noise in revealing default payments. For personal information that is difficult to authenticate (such as the size of the company, the revenue, the potential for false disclosure on the part of the financier, such information will interfere with investors, Therefore, it can not accurately judge the default risk of the financier. 3) the loan description affects the loan success rate, but there is information noise in revealing the default risk of the financier. The more words the loan describes and the more readable the text, the higher the success rate. But financiers with poor financial standing or integrity may use it to disguise themselves by providing false loan descriptions to deceive investors.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:F724.6;F832.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 彭紅楓;趙海燕;周洋;;借款陳述會(huì)影響借款成本和借款成功率嗎?——基于網(wǎng)絡(luò)借貸陳述的文本分析[J];金融研究;2016年04期

2 李思明;肖忠意;;社交朋友網(wǎng)絡(luò)資本與P2P網(wǎng)貸行為選擇研究[J];上海金融;2016年04期

3 孫武軍;樊小瑩;;從業(yè)經(jīng)歷和教育背景是否能提高借貸成功率?——來(lái)自P2P平臺(tái)的經(jīng)驗(yàn)證據(jù)[J];中央財(cái)經(jīng)大學(xué)學(xué)報(bào);2016年03期

4 呂勇斌;姜藝偉;張小青;;我國(guó)P2P平臺(tái)網(wǎng)絡(luò)借貸逾期行為和羊群行為研究[J];統(tǒng)計(jì)與決策;2016年04期

5 岳中剛;周勤;楊小軍;;眾籌融資、信息甄別與市場(chǎng)效率——基于人人貸的實(shí)證研究[J];經(jīng)濟(jì)學(xué)動(dòng)態(tài);2016年01期

6 談超;孫本芝;王冀寧;;P2P網(wǎng)絡(luò)借貸平臺(tái)中的逾期行為研究[J];財(cái)會(huì)通訊;2015年05期

7 王會(huì)娟;何琳;;借款描述對(duì)P2P網(wǎng)絡(luò)借貸行為影響的實(shí)證研究[J];金融經(jīng)濟(jì)學(xué)研究;2015年01期

8 李焰;高弋君;李珍妮;才子豪;王冰婷;楊宇軒;;借款人描述性信息對(duì)投資人決策的影響——基于P2P網(wǎng)絡(luò)借貸平臺(tái)的分析[J];經(jīng)濟(jì)研究;2014年S1期

9 王會(huì)娟;張路;;借款描述對(duì)P2P借貸行為的影響研究[J];金融理論與實(shí)踐;2014年08期

10 廖理;李夢(mèng)然;王正位;;聰明的投資者:非完全市場(chǎng)化利率與風(fēng)險(xiǎn)識(shí)別——來(lái)自P2P網(wǎng)絡(luò)借貸的證據(jù)[J];經(jīng)濟(jì)研究;2014年07期

相關(guān)碩士學(xué)位論文 前4條

1 艾麗淑;國(guó)內(nèi)P2P網(wǎng)絡(luò)借貸逾期率影響因素研究與社區(qū)網(wǎng)絡(luò)構(gòu)建建議[D];西南交通大學(xué);2015年

2 郭雷;借款描述與P2P網(wǎng)絡(luò)借貸行為[D];哈爾濱工業(yè)大學(xué);2015年

3 耿嘉;《人民日?qǐng)?bào)》頭版頭條報(bào)道“迷霧”研究[D];河北大學(xué);2013年

4 張娜;P2P網(wǎng)絡(luò)信貸行為研究[D];西南財(cái)經(jīng)大學(xué);2011年

,

本文編號(hào):1978309

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jingjilunwen/touziyanjiulunwen/1978309.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)180e4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com