基于模糊熵的貸款組合決策模型
發(fā)布時間:2018-05-07 16:08
本文選題:模糊變量 + 可信性理論。 參考:《山東師范大學》2014年碩士論文
【摘要】:在馬柯維茨(Markowitz)經典的均值—方差理論中,把收益率假設成為服從正態(tài)分布,利用收益率的方差度量投資中的風險,但這個假設經常與現實情況不一樣。我國商業(yè)銀行的貸款收益率具有模糊不確定性,因此,我們把收益率假設成模糊變量,引入模糊熵和信息熵來度量貸款的風險程度。 模糊熵具有描述信息不確定程度的性質。當我們把收益率考慮成隨機變量且服從正態(tài)分布時,模糊熵與方差在度量風險方面是等價的;但是當考慮收益率為模糊變量且不服從正態(tài)分布時,受到貸款資金在不同收益下風險等級不同的影響,模糊熵在風險衡量方面比方差更加合理。模糊熵改進了方差依靠概率分布且計算復雜的缺陷,在度量貸款風險時更加符合實際情況。 使用模糊熵度量貸款組合的風險時,因為不同的貸款項目之間會有復雜的相關性,所以如果忽視相關性構建貸款組合模型求解會使決策選擇集中在一個或者某幾個高收益的貸款項目中,與我們組合貸款的思想相違背。因此,為了解決這個小小的瑕疵,在模型中加入了分散風險的約束條件,從而彌補對忽視貸款項目間相關性以及貸款組合的組合數目過少的補償缺陷。 利用模糊模擬和遺傳算法相結合的混合智能算法解決模型求解問題。該算法打破常規(guī),使得求得最優(yōu)解變?yōu)榭赡,,并驗證了算法的可行性。
[Abstract]:In the classical mean-variance theory of Markowitz (Markowitz), the assumption of return is changed from normal distribution to measure the risk in investment with the variance of return, but this assumption is often different from the real situation. The loan yield of commercial banks in our country has fuzzy uncertainty. Therefore, we assume the rate of return as a fuzzy variable, and introduce fuzzy entropy and information entropy to measure the risk degree of loan. Fuzzy entropy has the property of describing the degree of uncertainty of information. When we consider the rate of return as a random variable and take it from the normal distribution, the fuzzy entropy and variance are equivalent in measuring risk, but when we consider the rate of return as a fuzzy variable and do not agree with the normal distribution, The fuzzy entropy is more reasonable than variance in risk measurement because of the different risk grade of loan funds under different income. Fuzzy entropy improves the defect that variance depends on probability distribution and computes complexity, which is more in line with the actual situation in measuring loan risk. When using fuzzy entropy to measure the risk of a loan portfolio, because of the complex correlation between different loan projects, Therefore, if we ignore the correlation and construct the loan portfolio model solution, the decision will be concentrated in one or several high-yield loan projects, which is contrary to our idea of portfolio loan. Therefore, in order to solve this small flaw, the constraint condition of decentralized risk is added to the model to compensate for ignoring the correlation between loan projects and the small number of loan portfolio. A hybrid intelligent algorithm, which combines fuzzy simulation and genetic algorithm, is used to solve the problem of model solving. The algorithm breaks the convention and makes it possible to find the optimal solution, and verifies the feasibility of the algorithm.
【學位授予單位】:山東師范大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F224;F830.5
【參考文獻】
相關期刊論文 前10條
1 姜繼嬌,楊乃定;基于管理熵的機構投資者集成風險預警模式研究[J];財經研究;2004年03期
2 屠新曙,王鍵;現代投資組合理論的若干進展[J];系統(tǒng)工程;1999年01期
3 林丹,李小明,王萍;用遺傳算法求解改進的投資組合模型[J];系統(tǒng)工程;2005年08期
4 郭福華;鄧飛其;;動態(tài)半絕對離差投資組合選擇模型[J];系統(tǒng)工程;2006年09期
5 馬永開,唐小我;不允許賣空的β值證券投資決策模型研究[J];管理工程學報;1999年04期
6 張繼國,朱永忠;模糊性的信息熵度量[J];河海大學常州分校學報;2001年04期
7 張世英,王東;基金投資行為及其監(jiān)管的模糊隨機理論研究[J];管理科學學報;2000年01期
8 徐緒松,陳彥斌;絕對離差證券組合投資模型及其模擬退火算法[J];管理科學學報;2002年03期
9 秦學志,吳沖鋒;模糊隨機風險偏好下的證券投資組合選擇方法[J];管理科學學報;2003年04期
10 李江濤;王建國;馬曉波;;熵風險下的國內證券投資組合模型[J];商業(yè)經濟;2009年21期
相關博士學位論文 前1條
1 陳國華;模糊投資組合優(yōu)化研究[D];湖南大學;2009年
本文編號:1857572
本文鏈接:http://www.sikaile.net/jingjilunwen/touziyanjiulunwen/1857572.html
最近更新
教材專著