我國(guó)主板證券市場(chǎng)新股發(fā)行定價(jià)的研究
發(fā)布時(shí)間:2018-03-02 12:18
本文選題:BP神經(jīng)網(wǎng)絡(luò) 切入點(diǎn):VaR方法 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著中國(guó)證券市場(chǎng)改革的深入,我國(guó)主板市場(chǎng)新股發(fā)行定價(jià)的準(zhǔn)確性也愈發(fā)重要。由于每一個(gè)國(guó)家的證券市場(chǎng)都具有不可完全復(fù)制性,因此在探索與借鑒的基礎(chǔ)上,找到適合我國(guó)主板市場(chǎng)的定價(jià)方法,尋求合理的股票價(jià)格成為本文的核心問(wèn)題。本文首先研究傳統(tǒng)定價(jià)方法,并比較它們之間的優(yōu)缺點(diǎn)。在此基礎(chǔ)上,尋找理論與方法的突破,研究發(fā)現(xiàn)傳統(tǒng)方法已經(jīng)不適合現(xiàn)有的中國(guó)主板市場(chǎng),而期權(quán)、風(fēng)險(xiǎn)、神經(jīng)網(wǎng)絡(luò)、博弈等概念的引入給予新股發(fā)行定價(jià)一個(gè)進(jìn)步的空間。對(duì)于主板市場(chǎng)的定價(jià),BP神經(jīng)網(wǎng)絡(luò)方法相對(duì)適用,它可以使誤差率達(dá)到15%左右,但是,我們認(rèn)為,精確的風(fēng)險(xiǎn)評(píng)估與因素選取可以使定價(jià)的準(zhǔn)確性提高,因此我們引入風(fēng)險(xiǎn)評(píng)估并對(duì)因素進(jìn)行選取。同時(shí),各國(guó)上市環(huán)境的差異是造成定價(jià)方法不能直接生搬硬套的另一個(gè)原因,所以篩選比較具有代表性的美國(guó)、新加坡、日本和德國(guó)這4個(gè)國(guó)家,與我國(guó)進(jìn)行上市制度的比較。本文探索BP神經(jīng)網(wǎng)絡(luò)與VaR風(fēng)險(xiǎn)定價(jià)結(jié)合的方法來(lái)進(jìn)行股票定價(jià),并得出CVaR比VaR方法更能準(zhǔn)確衡量風(fēng)險(xiǎn)的結(jié)論,因?yàn)榍罢哒`差率較低,平均僅達(dá)到12.69%,較以前的BP神經(jīng)網(wǎng)絡(luò)方法降低2%以上。同時(shí)加入政府制度的因素:將不可量化的政府制度作為上市成本因素,且利用歸一化方法統(tǒng)一不同的量綱。在深入研究中國(guó)、美國(guó)、新加坡、日本、德國(guó)這五個(gè)國(guó)家的上市制度的基礎(chǔ)上,利用改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)一步降低誤差率至11.96%,使定價(jià)更有效,這也是上市時(shí)間最短、上市資金最少、監(jiān)管力度最強(qiáng)的德國(guó)政府制度下的定價(jià)模型所得到的誤差率,同時(shí)我們得出監(jiān)管力度是上市時(shí)間、上市資金和監(jiān)管力度這三個(gè)因素中最重要的因素的結(jié)論,對(duì)中國(guó)政府進(jìn)一步改革上市制度有很大的助益。
[Abstract]:With the deepening of the reform of China stock market, IPO pricing accuracy of the motherboard market shares in China is increasingly important. Because of each country's securities market has not completely copied, so the exploration and based on the reference, to find suitable pricing methods in China stock market, to find a reasonable stock price has become the core issue in this paper. This paper studies the traditional pricing method, and compare the advantages and disadvantages between them. On this basis, the theory and method of looking for breakthrough, research found that the traditional method is not suitable for the existing Chinese motherboard market, and option, risk, neural network, introduce the game concept to IPO pricing a progress space for the motherboard market pricing, BP neural network method for it can reduce the error rate of about 15%, but we believe that accurate risk assessment and selection factors To improve the pricing accuracy, so we introduce the risk assessment and the factors were selected. At the same time, the differences of the listed environment is another cause of the pricing method cannot be directly applied mechanically, so we compared the representative of the United States, Singapore, Japan and Germany in the 4 countries, compared with the listing system I China. This paper explores method combined with BP neural network and VaR pricing risk for stock pricing, and that CVaR can measure the risk more accurately than the VaR method because the former conclusion, the error rate is low, the average reached only 12.69%, compared with the previous methods of BP neural network is reduced by more than 2%. At the same time to join the government: system factors the non quantifiable government system as listed cost factors, and using the normalization method of different dimension unity. In the study China, America, Singapore, Japan, the five countries of Germany Based on the market system, to further reduce the error rate to 11.96% by using the improved BP neural network model, the pricing is more effective, which is listed in the shortest time, the least error listed funds, pricing model of the German government supervision system under the strongest rate, at the same time, we come to the conclusion that supervision is time to market factors the most important of the three factors listed funds and supervision of the conclusions are of great help to the further reform of listed China government system.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 王成方;宋夏云;蔣巍;;承銷費(fèi)用、政府定價(jià)管制與IPO抑價(jià)——來(lái)自中國(guó)首次公開(kāi)發(fā)行公司的經(jīng)驗(yàn)證據(jù)[J];財(cái)經(jīng)論叢;2015年07期
2 蔣先玲;張斯琪;;投資者情緒對(duì)中國(guó)IPO首日收益率影響的實(shí)證分析[J];經(jīng)濟(jì)問(wèn)題;2015年06期
3 胡志強(qiáng);詹承啟;陳瀟瀟;;關(guān)于A股市場(chǎng)IPO浪潮下的抑價(jià)問(wèn)題[J];商業(yè)研究;2014年08期
4 田利輝;王冠英;;我國(guó)股票定價(jià)五因素模型:交易量如何影響股票收益率?[J];南開(kāi)經(jīng)濟(jì)研究;2014年02期
5 陳禮林,彭晗;修正的股息現(xiàn)值模型在新股定價(jià)中的應(yīng)用[J];預(yù)測(cè);1999年05期
,本文編號(hào):1556493
本文鏈接:http://www.sikaile.net/jingjilunwen/touziyanjiulunwen/1556493.html
最近更新
教材專著