基于網(wǎng)絡輿情的SVM股票價格預測研究
本文關鍵詞: 網(wǎng)絡輿情 支持向量機 股票價格預測 出處:《南京信息工程大學》2014年碩士論文 論文類型:學位論文
【摘要】:自證券市場建立以來,作為高收益和高風險并存的股票,一直是眾多投資者關注的對象。隨著互聯(lián)網(wǎng)絡平臺的快速發(fā)展,大數(shù)據(jù)時代到來,傳統(tǒng)的股票技術指標數(shù)據(jù)已不能滿足人們分析預測股票價格的需求。 本文提出一種基于網(wǎng)絡輿情和股票技術指標數(shù)據(jù)的支持向量機回歸模型(NPO-SVM),該模型提高了股票價格的預測精度。模型首先抓取股吧、微博等股評信息,將這些股評觀點用支持向量機算法分為看漲、看跌、看平三種股評情感傾向,計算看漲股評觀點占看漲股評和看跌股評觀點的比例作為網(wǎng)絡輿情;然后對網(wǎng)路輿情以及與股票收盤價相關系數(shù)在0.6以上的股票技術數(shù)據(jù)作主成分分析,最后對保留的主成分運用支持向量機回歸模型預測。并與基于股票技術指標數(shù)據(jù)的支持向量機回歸模型(TI-SVM)以及基于經(jīng)驗模態(tài)分解的支持向量機回歸模型(EMD-SVM)作對比,實證分析四只具有代表性的股票,得出NPO-SVM模型比TI-SVM模型、EMD-SVM模型具有更高的預測精度,可為股票投資者提供一種可靠的預測股票價格的方法。本文主要研究工作如下: (1)提出了一種將股評文本信息利用SVM機器學習,實現(xiàn)文本信息情感分類的新方法。該方法能夠將海量(日均百萬條)文本信息準確分類,測試分類準確率為85.4%。計算文本分類后的網(wǎng)絡輿情值,得出網(wǎng)絡輿情與股票收盤價之間的相關系數(shù)為0.7,說明網(wǎng)絡輿情與收盤價之間的相關性較強。 (2)提出了一種基于網(wǎng)絡輿情和股票技術指標的支持向量機回歸模型,對股票收盤價預測。實證分析結果表明,NPO-SVM模型的最大相對誤差為2.7%,平均絕對誤差為0.092,平均相對誤差為0.7%,趨勢正確率為76.37%。與TI-SVM模型、EMD-SVM模型相比,NPO-SVM模型的預測精度明顯提高。
[Abstract]:Since the establishment of the securities market, as a stock with high yield and high risk, it has always been the object of attention of many investors. With the rapid development of the Internet platform, the era of big data has come. The traditional stock technical index data can not meet the demand of people to analyze and forecast the stock price. This paper presents a support vector machine regression model based on network public opinion and stock technical index data. The model improves the precision of stock price prediction. These points of view are divided into bullish, bearish and leveling three kinds of stock review emotional tendency by using support vector machine algorithm, and the proportion of bullish and bearish opinion is calculated as network public opinion. Then the principal component analysis is made on the network public opinion and the stock technical data with a correlation coefficient of 0.6 or more with the closing price of the stock. Finally, support vector machine regression model is used to predict the retained principal components, and compared with the support vector machine regression model (TI-SVM) based on stock technical index data and the support vector machine regression model (EMD-SVM) based on empirical mode decomposition. Through the empirical analysis of four representative stocks, it is concluded that the NPO-SVM model has higher prediction accuracy than the TI-SVM model and can provide a reliable method for stock investors to predict the stock price. The main work of this paper is as follows:. This paper proposes a new method to classify the text information by using SVM machine learning. This method can classify the massive text information (millions of text information per day) accurately. The accuracy of test classification is 85.4. The correlation coefficient between network public opinion and stock closing price is 0.7, which shows that the correlation between network public opinion and closing price is strong. (2) A support vector machine regression model based on network public opinion and stock technical index is proposed. The results of empirical analysis show that the maximum relative error of NPO-SVM model is 2.7, the average absolute error is 0.092, the average relative error is 0.7, and the trend accuracy is 76.370.Compared with the TI-SVM model EMD-SVM model, the prediction accuracy of this model is obviously improved.
【學位授予單位】:南京信息工程大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F830.91;F224
【參考文獻】
相關期刊論文 前10條
1 ;Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization[J];Communications in Theoretical Physics;2006年04期
2 吳微;張凌;;自適應參數(shù)的AOSVR算法及其在股票預測中應用[J];大連理工大學學報;2009年04期
3 宋海斌;拜陽;董崇志;宋洋;;南海東北部內波特征——經(jīng)驗模態(tài)分解方法應用初探[J];地球物理學報;2010年02期
4 張志勇;李剛;林凌;崔新儀;張寶菊;;EMD和SPA算法在光譜法檢測面粉過氧化苯甲酰添加量中的應用[J];光譜學與光譜分析;2012年10期
5 樊奕辰;盧啟鵬;丁海泉;高洪智;陳星旦;;經(jīng)驗模態(tài)分解法在近紅外無創(chuàng)血紅蛋白檢測中的應用研究[J];光譜學與光譜分析;2013年02期
6 劉家和;金秀;陳露艷;苑瑩;;基于IDNPSO-BP神經(jīng)網(wǎng)絡的股票市場指數(shù)預測[J];東北大學學報(自然科學版);2013年06期
7 玄兆燕;楊公訓;;經(jīng)驗模態(tài)分解法在大氣時間序列預測中的應用[J];自動化學報;2008年01期
8 王繼明;楊國林;;基于Lucene的中文文本分詞[J];內蒙古工業(yè)大學學報(自然科學版);2007年03期
9 程昌品;陳強;姜永生;;基于ARIMA-SVM組合模型的股票價格預測[J];計算機仿真;2012年06期
10 文波;單甘霖;段修生;;基于KKT條件與殼向量的增量學習算法研究[J];計算機科學;2013年03期
相關博士學位論文 前1條
1 秦玉平;基于支持向量機的文本分類算法研究[D];大連理工大學;2008年
,本文編號:1525158
本文鏈接:http://www.sikaile.net/jingjilunwen/jinrongzhengquanlunwen/1525158.html